
Berner Fachhochschule (BFH), CH-2501 Biel, Switzerland

Analysis of the Cryptographic
Implementation of the Swiss Post Voting

Protocol

Philipp Locher, Rolf Haenni, Reto E. Koenig

July 19, 2019

On behalf of the Federal Chancellery

1

Management Summary

As a starting point of this mandate, we received a large amount of documents
describing the cryptographic protocol, the design of the system, technical details
of the implementation, and the results received from external reviewers. We also
received a large portion of the current system’s source code for inspection. The
explicit goal of our mandate was to verify as precisely as possible if the cryptographic
protocol is implemented adequately in the current system. For this, we accepted the
alleged security properties of the protocol as given without looking closely at the
formal proofs.
In our source code analysis, particular attention was given to the problems recently

found in the context of the source code publication of the extended system. One
specific problem allowed an attacker to bypass the individual verification mechanism
in such a way that vote manipulations remain undetected. With respect to that
specific problem, our analysis of the current system confirms that the problem has
been repaired and that corresponding documents have been updated adequately.
In other parts of the system’s source code, we encountered four major problem-

atic areas. Provided that corresponding system components are controlled by an
attacker, each of them has the potential of weakening the system’s security proper-
ties.

• The first problem arises from injecting the cryptographic parameters into the
system after generating them in an external process. If an attacker manages
to control this process or to modify the injected parameters, various security
problems may arise. As all system components adopt the injected parameters
without performing any consistency checks, these problems are likely to remain
undetected.

• The second problem results from the particular implementation of the tables,
in which the short choice codes are stored. These tables keep track of the
given voting option ordering, which implies that the server responding to a
submitted ballot could deduce the selected voting options without decrypting
the encrypted votes. By controlling this server, vote secrecy could be violated
on a large scale.

• The third problem is a major deviation from the cryptographic protocol in one
of the protocol’s core algorithms, which is used in the process of casting a vote.
This deviation undermines the formal security proofs, which remain conclusive
only as long as a one-to-one correspondence exists between implementation and
protocol.

• The fourth problem results from a lack of checking the input parameters of
some cryptographic algorithms relative to their domain. A best practice in
cryptographic protocol design is to perform such checks systematically. This
increases the system’s robustness against failures and attacks.

In the course of our analysis of both the cryptographic protocol and its implemen-
tation, we also encountered a number of minor inconsistencies, discrepancies, and
deviations from best practices, which affects the overall robustness of the system.

2

Revision History

Revision Date Description

0.1 May 24, 2019 Document initialization.

0.2 June 3, 2019 Document structure added.

0.3 June 13, 2019 Section 1 finished.

0.4 June 26, 2019 Section 2 finished.

0.5 July 1, 2019 Section 3 finished.

0.6 July 2, 2019 Management summary, final editing.

1.0 July 2, 2019 Document delivered to Federal Chancellery.

1.1 July 19, 2019 Minor corrections.

3

Contents

1 Introduction 5
1.1 Goal of Mandate . 5
1.2 Received Documents . 6
1.3 Received Source Code . 8

2 Cryptographic Protocol 10
2.1 General Protocol Aspects . 11

2.1.1 Cryptographic Setup . 11
2.1.2 Membership and Consistency Tests 13
2.1.3 Randomness Generation . 14
2.1.4 Group Operations . 14
2.1.5 Collision-Resistant Hashing . 15
2.1.6 Communication and Channel Security 15

2.2 Pre-Election Phase . 16
2.2.1 Algorithm Setup . 17
2.2.2 Algorithm Register . 19

2.3 Election Phase . 20
2.3.1 Algorithms GetID, GetKey, Confirm, CreateVote 24
2.3.2 Algorithms ProcessVote, CreateCC, ProcessConfirm 25

2.4 Post-Election Phase . 26

3 Source Code Analysis 30
3.1 General Protocol Aspects . 30
3.2 Cryptographic Setup . 33
3.3 Pre-Election Phase . 36
3.4 Election Phase . 37
3.5 Post-Election Phase . 39

4

1 Introduction

The Swiss Post received in 2017 a certificate for offering their online voting system
to 50% of the electorate. This certificate confirms that corresponding requirements of
the Ordinance on Electronic Voting (VEleS) are met, in particular those from Art. 4
related to individual verifiability [4]. Since then, the system has been in use in four
cantons. In the meantime, the system has continuously been developed with the goal of
meeting all VEleS requirements, including those of Art. 5 regarding complete verifiability.
To obtain an extended certificate for offering the system up to 100% of the electorate,
documentations and source code files have been been made public in February 2019 and
a public intrusion test has been conducted. In the course of these actions, external
reviewers have reported several flaws and vulnerabilities in the cryptographic design and
implementation of the system, for example one that allows an attacker to circumvent the
individual verification mechanism [14].

Although these findings have been made by inspecting the extended system, which is
not yet used in practice, concerns have been raised that some of these flaws may also
be present in the certified system, from which the extended system evolved. As a conse-
quence, the use of the present system has been suspended on March 29, 2019. For reasons
of disambiguation, this document only refers to the current system, which we will call
online voting system (OVS). It is based on an abstract voting protocol (AVP), which is
a high-level description of the cryptographic computations during the protocol execu-
tion and the information flow between the protocol participants. Detailed instructions
for implementing the AVP are specified separately in the voting protocol specification
(VPS), which serves as a bridge between the AVP and the system’s source code (SSC).
The relationship between these three levels of abstraction is depicted in Figure 1.1.

1.1 Goal of Mandate

Proving that a cryptographic protocol satisfies certain properties and implementing the
protocol such that these properties remain valid are two totally different tasks. Assuming
that the properties of the AVP are sufficiently strong to meet the VEleS requirements
relative to individual verifiability, the goal of this mandate was to check if these properties
are preserved in the actual implementation. For this, the additional documentation
(particularly the VPS) and the SSC written in Java and JavaScript had to be analyzed
and compared to the given AVP. Particular attention had to be been given to some
implementation pitfalls known from the cryptographic literature or from earlier mistakes
made in practical protocol implementations. Assuming that major discrepancies exist
between the AVP and the SSC, which may critically weaken some of the protocol’s alleged
security properties, the purpose of this mandate was to localize them in the course of
our analysis. On the other hand, independently of the actual findings, it is impossible to
uncover all possible problems. For that, the amount of received documents and source
code is too large compared to the relatively short duration of this mandate. Our analysis

5

Abstract Voting Protocol (AVP)

Voting Protocol Specification (VPS)

System Source Code (SSC)

Online Voting System (OVS)

Figure 1.1: Overview of the three levels of abstraction of an online voting system. The
solid arrows represent direct dependencies.

therefore focused on some of the most critical parts of the cryptographic protocol and its
implementation.

1.2 Received Documents

We received a large amount of documents describing the technical details and properties
of the OVS, but most of them are not very relevant for building up a cryptographic
understanding of the AVP and the VPS. In the limited given time frame, we focused
on the documents depicted in Figure 1.2, which turned out to be the most relevant
ones for conducting this mandate. Some documents exist in different versions, which we
had to consider for obtaining an accurate picture of the protocol and the system as it
exists today. While some documents are publicly available on the Swiss Post web site at
https://www.post.ch, some others are confidential.

The document graph in Figure 1.2 shows the relationship between the depicted doc-
uments, for example direct references are shown as solid arrows. Together with the
month/year of publication of corresponding document versions, we get a detailed picture
of how these documents evolved over time. A modification of the original AVP descrip-
tion in [1] has been released as a new document with a different title in 2017 [3]. This
document has undergone a major revision in April 2017 after feedback from external
reviewers had been received [8, 9]. Corresponding modifications have been made at ap-
proximately the same time to the VPS document [5]. The resulting Version 1.2 of [3] and

6

https://www.post.ch/en/business/a-z-of-subjects/industry-solutions/swiss-post-e-voting

Version 5.0 of [5] are the relevant documents for the certified system, which has been in
use from early 2018 to spring 2019. A second round of modification has been triggered
in 2019, when Lewis, Pereira, and Teague published a document describing the critical
flaw they found in the extended system [14]. The flaw allows a client-side attacker to
circumvent the individual verifiability mechanism, i.e., to submit a vote different from
the voter’s intention. In the aftermath of publishing this paper, an internal document
analyzing the reported problem has been created by Scytl [6]. A similar analysis has
been conducted by Kudelski Security on behalf of Swiss Post [7]. Both documents come
to the conclusion, that the current and the extended OVS are affected in the same way
by the encountered problem. The changes made to the latest Versions 5.1, 5.2, and 5.3
of [5] reflect the patches proposed in [6].

Regarding the set of public and non-public documents from Figure 1.1, we made the
following observations:

• The description of the AVP in [1] is outdated. Compared to the current protocol
description in [3], there are many significant differences, for example the modified
set of protocol participants or the name changes of some values in the protocol’s
information flow. Given that [1] is still available on the Swiss Post web page, and
according to its title, we expected it to be the most relevant AVP document. As
a consequence, we invested several hours in reading and trying to understand its
content. In [3], due to its unambiguous subtitle, we expected to find mainly the
protocol’s cryptographic proofs, not the latest version of the protocol itself.

• Some of the publicly available documentation has references to confidential docu-
ments, for example [2] refers to [3] and [8, 9] both refer to [5]. By holding back
important background information, this creates an unfortunate situation to poten-
tial readers of public documents from the Swiss Post web site.

• The lack of strict and simple naming conventions (e.g., “Swiss Online Voting Sys-
tem” vs. “Online Voting System” vs. “Online Voting Product” vs. “Online Voting
Platform” vs. “Scytl Online Voting” vs. “E-Voting Solution” vs. “EV Solution” vs.
“Scytl sVote” vs. “Swiss Post-Scytl Software” vs. “Scytl Standard Software”) makes
the navigation through the documents unnecessarily complicated, especially for a
person with an outsider’s view.

• The description of the symbolic proofs in [12] refers to Version 1.2 of [3], not to the
current Version 2.0. As mentioned above, some critical changes have been made
to the protocol in 2017 as a response to the external review in [8, 9]. Although
corresponding publication dates coincide, it remains unclear if these changes have
been taken into account in the latest version of [12].

• The role and current state of [2] as a document accompanying the AVP is unclear. It
seems that most parts of it have been merged into Version 5.0 of [5] (Appendix 7.2),
but it is still referenced prominently by the current Version 1.1 of [3]. While [3]
has been updated in 2019 as a response to the findings in [14], [2] has not been
modified since 2016.

7

[1]
Swiss Online Voting Protocol

Scytl
[3]

Swiss Online Voting System
Cryptographic Proof of Individual Verifiability

Scytl

Version 1.2 (February 2017)

Version 2.0 (April 2017)

[9]
Review of Electronic Voting Protocol Models

and Proofs – Final Report
D. Basin & S. Čapkun

[8]
Addendum to Review of Electronic Voting
Protocol Models and Proofs – Final Report

D. Basin & S. Čapkun

[12]
Analysis of Cast-as-Intended Verifiability

and Ballot Privacy Properties for Scytl's Swiss
Online Voting Protocol using ProVerif

D. Galindo

[5]
Online Voting

Protocol Specifications
Scytl

[2]
Online Voting

Cryptographic Tools Specification
Scytl

Version 4.7 (October 2016)

Version 4.8 (April 2017)

Version 4.9 (May 2017)

Version 5.0 (January 2018)

Version 5.1 (March 2019)

Version 5.2 (May 2019)

Version 1.1 (December 2016)

Version 1.0 (December 2017)

Version 2.0 (April 2017)

Version 1.0 (May 2017)

Version 1.0 (November 2016)

Version 2.0 (April 2017)

[6]
Security Analysis of Key Cryptographic

Elements for Individual Verifiability
Scytl

[14]
How Not to Prove Your Election Outcome

S. J. Lewis, O. Pereira, V. Teague
March 2019

[7]
Security Review of Key Cryptographic

Elements of the E-Voting Solution
Kudelsky Security

Version 1.1 (May 2019) Version 1.0 (April 2019)

Version 1.0 (2015)

Version 5.3 (June 2019)

Figure 1.2: Overview of available documents with solid arrows representing direct depen-
dencies and dashed arrows representing references.

We conclude that the available documents contain a large number of unnecessary redun-
dancies and inconsistencies.

1.3 Received Source Code

The initial kickoff meeting at the Swiss Federal Chancellery took place on May 16 and
on June 3 we received certain parts of Version 1.4.5 of the SSC. Unfortunately, the
missing parts prevented us from compiling and executing the code for testing. Given
the complex project structure and the large amount of missing dependencies, navigating
efficiently through the code in an IDE was very restricted. In the light of the vast amount
of source files (around 40’000 files and folders), we requested a complete project structure
including all dependencies, which then can be loaded more easily into a common IDE
for testing and inspection. Additionally, we requested that breakpoints can be set in a
debugging environment, such that important information about the actual program flow
can be deduced from corresponding stack traces. Until the end of our mandate, not all

8

of these requests have been fulfilled to our satisfaction.

Instead, two alternatives to a fully compilable, testable, and debuggable code base have
been offered. First, we were given the opportunity to define breakpoints, for which
stack traces and memory dumps were generated and delivered to us manually on June
7. Unfortunately, this worked only for three of the twenty breakpoints that we defined.
After insisting getting stack traces for all breakpoints, we received on June 14 a laptop
with an installed VPN connection to a debuggable system within the infrastructure of
the system provider. Unfortunately, it was not possible to debug all parts of the system.
This problem was solved on June 20, i.e., only ten days before the end of this mandate.
Due to this delay in providing us with the necessary working environment, it was difficult
to conduct our mission to the planned extent.

The received source code consists of five components, i.e., cryptolib, ov-channel, ov-client,
ov-sdm, and scytl-math. Each of them contains a large number of sub-components, which
are organized in a tree structure. Component and sub-components are defined as indi-
vidual Maven projects (more than 100 in total). In addition to the source code that we
received, there are two further components called ov-keystore and ov-logger, which we
were told were irrelevant for inspecting the implemented cryptography. Another missing
component is the “Admin Portal”, which apparently is used to enrich an election defini-
tion with cryptographic parameters. We explicitly requested access to its source code on
June 18, but our request has not been answered before the end of our mandate.

To the best of our knowledge, the received Version 1.4.5 of the SSC corresponds precisely
to the latest Versions 5.1 to 5.3 of the system specification document [5]. From an
outsider’s perspective, it seems that [5] describes what has been implemented rather than
SSC implements what has been specified. As such, we used [5] mainly as an accompanying
document for understanding the received source code.

9

2 Cryptographic Protocol

The main point of orientation for our protocol analysis is the description of the AVP in
Section 3 of [3]. Based on the formal security analysis in Section 4 of the same document,
the symbolic proofs conducted as described in [12], and the external review of these
documents in [8, 9], we assume that the protocol satisfies the required properties relative
to individual verifiability and vote secrecy. Therefore, we performed our analysis without
giving special attention to any of these accompanying documents, i.e., we considered the
soundness of the protocol as given.

Any cryptographic voting protocol decomposes naturally into three distinct phases. The
preparation of an election takes place during the pre-election phase, the submission of the
ballots during the election phase, and the derivation of the final election result during the
post-election phase. The protocol as presented in [3] is also structured in this way, except
that the pre-election phase is further split into two sub-phases called configuration and
registration. Besides, the election phase is called voting phase and the post-election phase
is called counting phase. In our analysis of the protocol and its implementation, we follow
its natural structure. Corresponding protocol diagrams are depicted in Figures 2.1 to 2.3.
They show the involved protocol participants in each phase and the general information
flow. For each protocol phase, and for each algorithm in each phase, we propose in this
section a checklist of important cryptographic aspects to consider in an implementation
of the AVP. In Section 3, these checklists will then be evaluated against the OVS source
code that we received. In Section 2.1, we discuss some general protocol aspects, which
must be implemented with maximum care.

In our discussion of the protocol, we try to use exactly the same terminology as in [3]. In
particular, we consider the following protocol parties and refer to them using respective
abbreviations:

• Election Authorities (EA),

• Bulletin Board Manager (BBM),

• Registrars (REG),

• Auditors (AUD),

• Voting Device (VD),

• Voter.

According to the Appendix A.1 of [3], EA and REG are implemented as a single party in
the particular setup of the Swiss Post OVS. In general, merging two parties and corre-
sponding trust assumptions may have a great impact on the protocol’s security properties.
Even if we have no specific objections against this design decision, we consider it a deli-
cate deviation from the protocol (EA and REG are considered as separate parties in the
formal and symbolic proofs in [3, 12]). We will not further question this decision, but by
making a distinction between EA and REG in our analysis, we follow the description of
the protocol.

10

2.1 General Protocol Aspects

By looking closely at the three phases of the protocol, we encountered some lack of
precision at various points. For example, we found it difficult to understand exactly how
information is exchanged during protocol runs. Apparently, by receiving messages from
various parties and by storing some of the received data on the bulletin board BB, the
BBM plays a central role in the communication model. But then it remains unclear
whether “publishing” refers to sending a message to the BBM, which then forwards the
message to the bulletin board, or to sending the message directly to the bulletin board.
To the best of our understanding, we consider BBM as a gateway from and to the bulletin
board, which itself can be seen as the BBM’s local storage (as such it does not appear
in our protocol diagrams as a separate protocol participant). Note that by possessing
an important secret information, the codes secret key Csk, BBM plays another important
role in the protocol (a role that formerly was called return code generator in [1]), for
which it needs to be trusted.

Another general problem that we found is the inconsistency of the parameter lists and
return values for some algorithms. For example, the algorithm Register requires the
number k of candidates to fulfill its task, but k is not included explicitly in the list
of parameters for the algorithm as specified. Similarly, according to our understanding
of the protocol, Register must return the short vote cast code sVCCid, not the (long)
vote cast code VCCid as specified in the protocol’s description. We found numerous such
minor issues, which make the protocol’s comprehensibility more complex than necessary.
In each case, we tried to derive the correct functionality from our general understanding
of the protocol or from the additional information presented in [5].

Based on the discussion of the following subsections, we propose applying the checklist
of Table 2.1 to the current implementation. It contains various general protocol imple-
mentation issues, to which special attention should be drawn during the development
of the system. Our analysis of the source code in Section 3.1 will be aligned along this
checklist.

2.1.1 Cryptographic Setup

Fundamental from a cryptographic point of view is the generation of the cryptographic
setup. Given that ElGamal is used as encryption scheme and that candidates are rep-
resented by prime numbers, the cryptographic setup mainly consists of a prime-order
subgroup Gq Ă Z˚p for some safe prime p “ 2q` 1 and an element g P Gqzt1u generating
that subgroup. While knowing Gq and g is mandatory for almost every algorithm in the
protocol, the protocol description says little about how, when, and by whom these pa-
rameters are generated. It is also not very clear how these parameters are communicated
to the involved parties and how they relate to the security parameter 1λ passed to the
algorithms Setup and Register.

11

Nr. Description of Check

G1 EA, REG, BBM, VD, and AUD all verify the consistency of the cryptographic
parameters p, q, g, 1λ before using them.

G2 Each application of PBKDF2 generates keys K of sufficient length (λ bits or
higher) and sufficient security (2λ´φ iterations or higher).

G3 EA, REG, BBM, VD, and AUD perform membership and consistency tests for
all algorithm parameters.

G4 Picking elements uniformly at random based on the output of a cryptographi-
cally secure PRNG is done properly.

G5 Group operations in Gq, Zq, and Z˚p are computed properly.

G6 Collision-resistance is preserved for hash values of multiple inputs and for input
domains different from t0, 1u˚.

G7 Whenever necessary, messages are properly encrypted and/or signed when
transmitted from one party to another. Certificates for the involved public
keys exist and are valid within the system’s PKI.

G8 The messages exchanged during protocol runs contain exactly the specified val-
ues. Exchanging additional values is only allowed if they are completely irrele-
vant for the protocol’s cryptographic functionality.

Table 2.1: List of general checks relative to the cryptographic setup, the membership
and consistency of algorithm parameters, the generation of randomness, the
proper computation of group operations, collision-resistant hashing, and the
authenticity of received messages.

In an earlier version of the protocol [1], the task of generating suitable parameters was
explicitly assigned to EA (as part of executing Setup). This is no longer the case in the
current protocol version. Therefore, we assume that p, q, g, and 1λ are generated outside
of the protocol, i.e., the protocol parties obtain them as global constants, which need not
to be exchanged during the protocol execution. However, to ensure that no attack can
be conducted based on infiltrating weak parameters, we expect each party to test the
consistency of these parameters. Here are the tests that we would expect:

• p P P (with probability 1´ 1
2λ

or higher), where P denotes the set all primes;

• q P P (with probability 1´ 1
2λ
);

• p “ 2q ` 1;

• ‖p‖ is consistent with 1λ (according to current recommendations);

• p is not close to 2k and 2k`1 for k “ tlog2 pu;

• g P Gqzt1u (e.g., by computing the Jacobi symbol).

12

Ideally, p is determined verifiably at random, such that all other parties can convince
themselves that no hidden back doors have been installed [11].

Other cryptographic parameters such as the output length of the cryptographic hash
function, the key size of the symmetric encryption scheme, the number of iterations of
the key derivation function (KDF), and the length of the RSA signature keys should
be consistent with 1λ. If we assume that λ will be 128 or less, the proposed standards
SHA256 for hashing, AES-GCM for symmetric encryption, and PBKDF2 for key deriva-
tion are legitimate choices.1 Relative to the KDF, the number of iterations needs to
be checked in the current implementation of the protocol. As a general rule of thumb,
we assume that c iterations increase the security of the generated key by log2 c bits.2

Therefore, in order to reach λ bits of security, every application of the KDF needs to
satisfy φ ` log2 c ě λ and κ ě λ, where φ “ ‖pwd‖ denotes the bit-length of the input
password pwd and κ “ ‖K‖ the bit-length of the generated key K. In other words, the
number of iterations c should be set to 2λ´φ or higher.

2.1.2 Membership and Consistency Tests

Every single input parameter of the protocol’s algorithms has a well-defined domain.
Before calling an algorithm (or initially when running the algorithm), each party should
therefore check that all parameters are members of the corresponding domain. For ex-
ample, the parameter Csk of the algorithm must be an element of Zq, where q denotes
the order of the given group Gq. In some cases, performing these membership tests may
not be relevant for the protocol’s security properties, but in some cases they are. Since
many attacks based on infiltrating invalid parameters are known in the cryptographic
literature, it is a best practice to perform such tests systematically in an implementation
of a cryptographic protocol.

To illustrate the importance of such tests, suppose that EA select values tv1, v2, v3u
in an election with k “ 3 candidates i P t1, 2, 3u, where v1, v2 P P are prime, but
v3 “ v1v2 R P is composite. If none of the other parties checks the consistency of the set
tv1, v2, v3u during the protocol execution, then by factoring the decrypted ballots in the
Tally algorithm, Candidate 3 will not receive a single vote (every vote for Candidate 3
generates one vote for Candidate 1 and one vote for Candidate 2). Clearly, such an
attack could be detected by looking at the number of votes contained in each ballot,
but the damage could not be reversed entirely in every possible situation. Implementing
corresponding tests vi P P (together with testing vi P Gq) for every i P t1, . . . , ku is

1While SHA256 and PBKDF2 are still widely used in practice, newer standards are available since
many years. The hash algorithm SHA-3 exists since 2012 and the key derivation function Argon2 since
2015. Using the latest international standards is generally recommended in security-critical applications.

2In the light of attacks based on special hardware (GPU, FPGA), some may advocate an even more
conservative rule of thumb. More recent methods such as Argon2 maximize resistance to such attacks
by offering a time-memory trade-off.

13

therefore of uttermost importance.3 Another important test guarantees that the product
of the t largest values in the set tv1, . . . , vku is smaller than p (otherwise computing
modulo p in Gq leads to a completely different factorization).

In the presence of multiple parameters, it may also happen that some parameters are
inconsistent to each other. For example, if the MixTallypC, C1, πmixq algorithm is called
with two input lists C and C1 of different length (or if πmix internally is inconsistent
with the length of C and C1), then obviously something has gone wrong somewhere
in the process. To exclude attacks based on infiltrating inconsistent parameters, each
party should perform corresponding consistency tests along with the membership tests
mentioned above, ideally in a most systematic manner for all sets, lists, and vectors
(relative to the number of candidates k, the number of choices t, the number of voters s,
or the number of submitted ballots n).

2.1.3 Randomness Generation

Generating a sufficient amount of randomness in reasonable time is a difficult problem
in many cryptographic applications. The usual solution consists in deriving pseudo-
randomness deterministically from an initial random seed, which is extracted from a
real randomness source. Clearly, the quality of the pseudorandomness depends both on
the quality of the random seed and on the properties of the pseudorandom generator
(PRNG) in use. While there are best practices for both, many things can go wrong in
an actual implementation (the literature on attacks of real-world systems based on weak
randomness is substantial). It is therefore necessary to implement current standards and
best practices with greatest possible care (see for example NIST recommendations SP
800-90A, SP 800-90B, and SP 800-90C).

At various places of the AVP, elements from different sets must be picked uniformly
at random. Translating the output of a PRNG (usually a sequence of random bits or
bytes) into an algorithm for picking elements uniformly at random from various sets
is another potential source for implementation mistakes. In particular cases, even tiny
deviations from a uniform distribution may have an impact on the system’s security.
These algorithms must therefore be designed and implemented appropriately [13, 15].

2.1.4 Group Operations

In the AVP, operations of modular arithmetic appear in various groups. It is important
to implement these operation properly, i.e., always using the right modulus. The most
important group is the multiplicative subgroup Gq Ă Z˚p of integers modulo p, where
q denotes the group’s prime order. Multiplications x ˆ y for elements x, y P Gq must
therefore be implemented as xy mod p and divisions x

y as xy´1 mod p, where y´1 mod p

3Alternatively, it would not be difficult to let each party compute these values using a deterministic
algorithm.

14

denotes the multiplicative inverse of y modulo p. Similarly, exponentiations xz for non-
negative exponents z P Z must be implemented as xz mod p, whereas exponentiations
x´z for negative exponents can be implemented either as px´1qz mod p or pxzq´1 mod p.
For improved performance, exponents z R Zq can be replaced by elements z mod q P Zq.
Generally, computations in the exponent can be implemented as operations in the prime-
order field Zq, i.e., by computing additions, subtractions, multiplications, and divisions
modulo q.

Multiplications, divisions, and exponentiations relative to RSA keys pk “ pe, nq or sk “
pd, nq are operations in the multiplicative group Z˚n of integers modulo n. Negative
exponents can be treated as explained above. Since the group order φpnq “ |Z˚n| is
unknown, computations in the exponent cannot be optimized in the same way as above.

2.1.5 Collision-Resistant Hashing

Collision-resistance is the core property of a cryptographic hash function H : t0, 1u˚ Ñ
t0, 1u` with an output length of ` bits. It is assumed that current hash functions such as
SHA256 or the members of the SHA3 family offer a sufficiently high degree of collision-
resistance. While the security of a cryptographic protocol often relies strongly on this
property of the underlying hash function, it is easily possible to violate collision-resistance
in an actual implementation by not giving enough attention to some subtle details. A
common mistake is to hash the concatenation of two inputs to the hash function, i.e., to
compute Hpx||yq for inputs x and y of arbitrary length. Since many other values x1, y1

lead exactly to the same concatenation x1||y1 “ x||y, this particular implementation
of hashing two values using a collision-resistant hash function H is no longer collision-
resistant. Similar problems may arise even for single input values, if a non-injective
encoding function is used for encoding them as bit strings.

In a carefully implemented OVS, these problems are avoided in every application of the
underlying hash function. In the AVP, there are several applications of H with multiple
inputs and input domains different from t0, 1u˚, but neither the protocol description in [3]
nor the additional detailed information in [5] specify the actual hashing implementation
in sufficient detail (beyond referring to concatenation). Excluding the problems described
above is a prerequisite for the correct functioning of the protocol.

2.1.6 Communication and Channel Security

By exchanging messages during the execution of the protocol, it is important for the
involved parties to ensure that the transmission of the messages is protected. If insecure
channels are used, the necessary security can be achieved using encryption and digital
signatures. In both cases, public keys must be exchanged and validated beforehand,
usually with the aid of a PKI based on certificates. Sending a message therefore means
to encrypt it using the recipient’s public key and to sign it using the sender’s private key

15

(preferably using the sign-then-encrypt method). Conversely, receiving a message means
to perform the decryption using the recipient’s private key and to validate the signature
using the sender’s public key. Long messages are usually encrypted in a hybrid manner
using a symmetric encryption scheme.

In the given AVP, only messages containing secret values must be encrypted for transmis-
sion (all other values are “half-public” within the protocol). Transmitting secret values
only appears in two particular cases during the setup procedure, when secret keys are
transmitted from EA to REG and BBM (see Section 2.2). Obviously, ensuring the con-
fidentiality of these keys is a prerequisite for enabling the system’s security properties.
In contrast, ensuring the integrity and authenticity of the exchanged messages is always
important in a proper implementation of the system, independently of the actual content
of the message.

In addition to guaranteeing the right channel security properties, it is crucial for the
proper functioning of the protocol that parties do not exchange messages other than the
ones specified in the AVP. For example, sending the signature of a message together
with the encrypted message (known as the encrypt-and-sign approach) may completely
break the message’s confidentiality, independently of the properties of the underlying
encryption scheme. Other subtle problems may arise whenever additional messages are
exchanged. In extreme cases, they may break up the security properties of a carefully
designed system.

2.2 Pre-Election Phase

In the pre-election phase as depicted in Figure 2.1, only EA and REG are involved in
an active role. By running the Setup algorithm, EA generates two asymmetric key pairs
pEBpk, EBskq and pVCCspk, VCCsskq and one secret key Csk. The first private decryption key
EBsk is kept secret by EA, the second private signature key VCCssk is sent to REG, and
the secret key Csk is sent to both REG and BBM.4 By running the Register algorithm,
REG generates the data related to each voting card and forwards respective parts of the
data to BBM and the voters. Therefore, it is assumed that the number s of generated
voting cards corresponds to the total number of eligible voters. Note that the protocol
remains unclear about how REG determines s. We therefore simply assume that REG
selects s according to the number of entries in the electoral roll, which is available from
an offline source.

In our attempt of understanding the pre-election phase in every detail, we encountered
some inconsistencies in the formal description. Here is a list of the issues we found and
some remarks of how we decided to best deal with them:

4We are not aware of any convincing reason for REG and BBM not to generate VCCssk and Csk them-
selves. Letting EA generating these keys may result in unnecessary impersonation attacks. Generally,
generating private keying material by other parties is against best practices in cryptographic protocol
design.

16

• Defining the voting options as a set tv1, . . . , vku is insufficient, because then the
assignment of the values vi to the k candidates is ambiguous. We propose to specify
these values as a vector pv1, . . . , vkq instead of a set, which defines an explicit order.
Option vi is then assigned to Candidate i for all 1 ď i ď k.

• The number t of voting options that each voter can select is an important additional
election parameter. We assume that it is specified by EA, which then sends it to
BBM.

• The result function ρ is never used in the protocol. Therefore, it is not necessary
for the EA to specify it during the setup phase.

• REG needs to know the number s of voting cards to generate. This value is an
important additional election parameter, which we assume is given to REG from
an offline source.

• The vector pv1, . . . , vkq is an indispensable additional input parameter of the Register
algorithm.

• Obtaining VCCid as a return value from calling Register is obviously a mistake in
the description of the algorithm. The correct return value is sVCCid.

• Sending tpvi, sCCidi qu
k
i“1 to the voter makes no sense, because assigning values vi

(prime numbers from Gq) properly to candidates is impossible for humans. There-
fore, we propose that Register returns a vector psCCidi q

k
i“1 instead of a set, which

respects the order of the list of official candidates in the same way as their repre-
sentations pv1, . . . , vkq.

• Since REG is responsible for filling up the list ID with the data related to corre-
sponding voting cards and publishing it on the bulletin board, we propose that
REG (not EA) is also responsible for initializing this list.

All discrepancies between the description and our understanding of the protocol are
highlighted in the protocol diagram of Figure 2.1.

In the following subsections, we will have a closer look at the two pre-election algorithms
Setup and Register. The checklist of Table 2.2 is the result of this investigation. It refers
to the points that we consider crucial when implementing these algorithms (in addition
to the general points listed in Table 2.1).

2.2.1 Algorithm Setup

The private decryption key EBsk and the codes secret key Csk are both picked uniformly
at random from Zq, whereas EBpk “ gEBsk is computed within the encryption group Gq.
Both steps fall under the umbrella of the general checks G4 and G5 of Table 2.1, i.e., no
additional specific checks must be defined. The same holds for the cryptographic setup
of the group Gq and the generator g.

17

Election Authorities
<latexit sha1_base64="Jlvq52tojgEDvX8TO+Q23vXJqTk=">AAACDnicbZC9SgNBFIVn/Y3xb9VShMEoWEjY1UI7FREsI5hESEKYndxNhsz+MHNXDEsqX8BW3yCtgp3Y+gr6NM4mKdR4YOBwzr0M9/NiKTQ6zqc1NT0zOzefW8gvLi2vrNpr6xUdJYpDmUcyUjce0yBFCGUUKOEmVsACT0LV655nffUWlBZReI29GBoBa4fCF5yhiZr2Vh3hDj0/vZDAs4ieJdiJlEABut+0C07RGYpOGndsCieDx0xPpab9VW9FPAkgRC6Z1jXXiXFf+z4LhOw1UqZQcAn9fD3REDPeZW2oGRuyAHQjHd7Tp7smaVE/UuaFSIfpz42UBVr3As9MBgw7+m+Xhf91tQT940YqwjhBCPnoIz+RFCOawaEtoQwF2TOG8YwBp7zDFONoEBoY7t/TJ03loOgeFg+unMLpDhkpRzbJNtkjLjkip+SSlEiZcHJPBuSZvFgP1qv1Zr2PRqes8c4G+SXr4xt1x6Gg</latexit>

Bulletin Board
Manager

<latexit sha1_base64="1gIprjb5pYO9Lfl2AUyXRV/DTvE=">AAACIXicbVDLThtBEJwlgRCeJhxzGcVB4gDWrjmEI4JLLpFAirEl78rqHffaI8/MrmZ6EdbKv8EP8BtcQcot4gb8TMbGBx4paaRSVbdqutJCSUdh+BAsfPi4uPRp+fPK6tr6xmZt68u5y0srsCVyldtOCg6VNNgiSQo7hUXQqcJ2OjqZ+u0LtE7m5jeNC0w0DIzMpADyUq8WxgINoZVmEBNeUppVx6VSSNLw4xxsP467+5HWyS8wMEA76dXqYSOcgb8n0ZzU2Rynvdpj3M9FqX2MUOBcNwoL2nNZBlqqcVKBJSkUTlbi0mEBYuRjup4a0OiSanbihO94pc+z3PpniM/UlxsVaOfGOvWTGmjo3npT8X9et6TsMKmkKUpCI56DslJxyvm0L96XFgWpsScgrPR/5WIIFoQvzfkyorenvyfnzUZ00GieNetH3+e1LLOv7BvbZRH7wY7YT3bKWkywK3bDbtldcB38Cf4G98+jC8F8Z5u9QvD0D8xZpMI=</latexit>

Registrars
<latexit sha1_base64="IRWmmER1MatK4RopgTRb+cYhqR8=">AAACBHicbVDLSgNBEJz1GWPUaI5eFqPgQcJuPKgnA148RjEPSUKYnfQmQ2YfzPSKy5Krv+FVwZt49T8U/AD9CZ08DppY0FBUddPd5YSCK7SsN2NufmFxaTm1kl7NrK1vZDe3qiqIJIMKC0Qg6w5VILgPFeQooB5KoJ4joOb0z4Z+7Qak4oF/hXEILY92fe5yRlFL7WyuiXCLjptcQldvk1SqQTubtwrWCOYssSckf/r9efL1cZ0pt7PvzU7AIg98ZIIq1bCtEA+U61KPi7iVUImcCRikm5GCkLI+7UJDU596oFrJ6IuBuaeVjukGUpeP5kj9PZFQT6nYc3SnR7Gnpr2h+J/XiNA9biXcDyMEn40XuZEwMTCHkZgdLoGhiDWhTHJ9q8l6VFKGOjgdhj39+iypFgv2YaF4YeVLu2SMFNkmO2Sf2OSIlMg5KZMKYSQm9+SBPBp3xpPxbLyMW+eMyUyO/IHx+gPwCJ2L</latexit>

Voter
<latexit sha1_base64="WO/fMOnsnk1fH43+e1M/LtKMKjY=">AAAB/XicbVDLSgNBEJyNrxhfUY9eFqPgQcJuPOjNgBePEcwDkjXMTnqTIbMPZnrFZQn+hnpT8CCIV79Fv8bZJAdNLGgoqrrp7nIjwRVa1peRW1hcWl7JrxbW1jc2t4rbOw0VxpJBnYUilC2XKhA8gDpyFNCKJFDfFdB0hxeZ37wFqXgYXGMSgePTfsA9zihq6aaDcIeulzZCBDnqFktW2RrDnCf2lJTO3x4zPNW6xe9OL2SxDwEyQZVq21aEx8rzqM9F4qRUImcCRoVOrCCibEj70NY0oD4oJx2fPzIPtdIzvVDqCtAcq78nUuorlfiu7vQpDtSsl4n/ee0YvTMn5UEUIwRsssiLhYmhmWVh9rgEhiLRhDLJ9a0mG1BJmQ5D6TDs2dfnSaNStk/KlSurVD0gE+TJHtknR8Qmp6RKLkmN1AkjkjyQZ/Ji3BuvxrvxMWnNGdOZXfIHxucPTV+bBQ==</latexit>

BB hIDi
<latexit sha1_base64="CfCS6sAgsg6ChHs31q8bLOAjDTA=">AAAGlHicdZRLbxMxEMfdQkMJrxYkLkjVigqJA6qScoADh2rdCKqoqA+6LeqmkeOdTa3sSx4vVRTlBl+GKxz4KnwGvgROss9011Kk+c/8ZsYeZz2IPIGq1fq7snrn7lrj3vr95oOHjx4/2dh8amEYSw5nPPRCeTFgCJ4I4EwJ5cFFJIH5Aw/OByM6i59/A4kiDL6ocQQ9nw0D4QrOlHb1N7Zs07Q9cBWTMryxPRYMPbAP9m05t/ob262d1nwZt412YmzvkeN/P7b+nBz1N9eubCfksQ+B4h5DvGy3IvUGXZf5whv3JkwqwT2YNu0YIWJ8xIZwqc2A+YC9yfxEU+OV9jiGG0r9C5Qx9xYzJsxHHPsDTfpMXeNybOasil3Gyn3fm4ggihUEfNHIjT1DhcZsPIYjJHDljbXBuBR6rwa/ZpJxpYfYtB1w7Y6Jo4k9K63UpGNO+6mNo+k0RaJqJMoQWihCq2pYlGKBmck6LKrD8nanVlc4GaVVDgknhQ72ESCnFjINdjtfS9FE5/so1LdoVfnuaXTjFKi5rgItGo1qqukTXVUlYF0C1iSMsJQwwuqBLBB09TBSp0mLo9SqqgHV4xD5BdMS0xcJhWUM6ziLlqdLq1pimcIajB4WIHpYhZhmdmzTzEaW99euZvK3AhVHGTxXKf8RAsgiWiTz1QIKCFYjmH1JAc8RLZLtFpETGOp3EmSGpY68jSpc5FwVQl0YF2NaZpPSD6kCK1T5OXJXCh3JkANiiSr4yrUoXaqkr6hch4aBK6S/XCpxa1i/yO3l9/e2Ye3utN/u7B7rp9kgi7VOXpCX5DVpk3dkj3wiR+SMcPKd/CS/yO/G88aHBm10FujqSpLzjJRW4/N/JTJlDg==</latexit>

(v1, . . . , vk), Csk, VCCssk
<latexit sha1_base64="FcAQ/RQg7iCN+jBQ5/Pj/RLBR3o=">AAAElXicdZPNbtNAEMe3rYESvlI4cEAgiwqpSFEUlwO9VKrqhg/lQEuJWxQHs1mP25W/Vp51UGTlhHgYrnDhVXgGXoJN7DhJ66xkaf4zv/+sd+wdiICjbLX+rq1vaDdu3tq8Xbtz9979B/WthxbGacKgy+IgTs4HFCHgEXQllwGciwRoOAjgbOCbk/rZEBLkcfRJjgT0Q3oRcY8zKlXKqT/dGTpGww7cWGJj6PgvG7aJfsO2TBPRd+rbrWZruvTrgVEE2wfk5N+PZ38+HjtbG19tN2ZpCJFkAUXsGS0hG+h5NOTBqJ/RRHIWwLhmpwiCMp9eQE+FEQ0B+9n0QGP9hcq4uhcn6omkPs0uOjIaIo7CgSJDKi/xam2SrKr1Uunt9TMeiVRCxPKNvDTQZaxPpqO7PAEmg5EKKEu4eledXdKEMqlmWLNd8Oz2IfqZPWktZdY+HDuzGP3xeIaIakSUiLnQxKzqkX+AkpnIVZhYhc23O7U63C0ppeYQd2fQ+yMEmFO5nBU77c9L1ULP32Ohv2VWte+cim/uAjXVVaBlCn9FN3WiL1UGXGXAFQYflww+Vg8kR9BTw1DJYpYgU1EWpmpmeAsRlBUliqZKwAKC1QiWv0/E5ogSxQkKRN1J4+oNvB5Yu03jVXP3RF1OneRrkzwhz8kOMchrckDekWPSJYx8Jz/JL/Jbe6zta0famxxdXys8j8jS0j78B2uem7I=</latexit>

(v1, . . . , vk), t,⌦, ⇢, EBpk, Csk, VCCspk
<latexit sha1_base64="O6qMryktKZGxhwypDl0zuCaqxpQ=">AAAEqXicdZPNbtNAEMe3rYESvlI4IiGLCqkIK4rLAY5VTQQoBxpK3EAc3M16nay8tleedVBk5cgz8CpcuMIz8Ay8BOvESZzWWcnW/Gd+M7s79gwFZyCbzb87u3vajZu39m/X7ty9d/9B/eChDXGaENolMY+T3hAD5SyiXckkpz2RUBwOOb0YBlYev5jQBFgcfZJTQQchHkXMZwRL5XLr5tHENQ2He7EEY+IGzw1pOB9COsKGk4xjw2mdisBwLFAv27JABG79sNlozpd+3TAL4/AEdf59f/Lz45l7sHfpeDFJQxpJwjFA32wKaYDv45Dx6SDDiWSE01nNSYEKTAI8on1lRjikMMjml5zpz5TH0/04UU8k9bm3nJHhEGAaDhUZYjmGq7HcWRXrp9J/PchYJFJJI7LYyE+5LmM975jusYQSyafKwCRh6qw6GeMEE6n6WnM86qsmQZA5eWkps9bpzF3aEMxmS0RUI2KFWKUiVlWN/AOUmFxuw8Q2bL3dud1m3opSag0xbwm9fwOUrqmFXAbbrc8b0UKvz1Gqb1tV5dvn4ptXoua6CrQtEWyppm70tSoBtiXAloQANhICqG7IAgFfNUM5i15SmYpVYK6WCW9pRFcRJYqiStASAtUIrH6fiKwRJYobFIiaSfPqBF437OOG+bJx3FHDqaPF2keP0VN0hEz0Cp2gd+gMdRFBP9Av9Bv90V5oHa2nfVmguztFziO0sTTyHzOuo0M=</latexit>

Select (v1, . . . , vk), t,⌦, ⇢
<latexit sha1_base64="YkW7U2l9AvwjAAWHdg53MSWeGjs=">AAACGHicbVDLSgNBEJz1/Tbq0ctgFBWWsBsPehS8eFPRqJANy+ykNxkys7PM9AZCyCf4A/6GVwVv4tWbfo2TmIOvgoaiqpvuriSXwmIQvHsTk1PTM7Nz8wuLS8srq6W19WurC8OhxrXU5jZhFqTIoIYCJdzmBphKJNwknZOhf9MFY4XOrrCXQ0OxViZSwRk6KS7tXoIEjnR7rxuHfiSbGq3fjTv7PvrRmYIW8yPT1ttxqRxUghHoXxKOSZmMcR6XPqKm5oWCDLlk1tbDIEffpilTQvYafWZQcAmDhaiwkDPeYS2oO5oxBbbRH302oDtOadJUG1cZ0pH6faLPlLU9lbhOxbBtf3tD8T+vXmB61OiLLC8QMv61KC0kRU2HMdGmMC4W2XOEcSPcrZS3mWEcXZgujPD363/JdbUSHlSqF9XyMR3HMkc2yRbZIyE5JMfklJyTGuHkjjyQR/Lk3XvP3ov3+tU64Y1nNsgPeG+fIAae2Q==</latexit>

(EBpk, EBsk, Csk, VCCspk, VCCssk) Setup(1�)
<latexit sha1_base64="95gAMQ0Rl+p9sIOP1IuX+9Ru9Pk=">AAAC/3icdVHNbtQwEPaGv7L8dFuOSCiiQtpK1SopB7ggVY0qcWyB3VbaLCvHGbdWnMSyJ1SrKAcOfZIekDggjvAIXOHEM/ASOMm2lHY7ksefZz7P2PNFSgqDnve749y4eev2naW73Xv3Hzxc7q2sjkxeaAZDlstcH0TUgBQZDFGghAOlgaaRhP0oCer8/gfQRuTZO5wpmKT0MBNcMIo2NO296oc72yrZsN5YH9RuFARGzXeTrIcSOFKt8+PwLWCh+v77UNoOMV2f9ta8gdeYexX4c7C2Rfb+nDz59mZ3utL5HMY5K1LIkElqzNj3FG4Yzmkq5GxSUo2CSai6YWFAUZbQQxhbmNEUzKRsPly5z2wkdnmu7crQbaIXb5Q0NWaWRpaZUjwyl3N1cFFuXCB/OSlFpgqEjLWNeCFdzN16em4sNDCUMwso08K+1WVHVFOGdsbdMAbeDLIM69KI5c52NT3DJqmqM4paTFHnlOBCkWBRjVacc059vI6mrqP9a9cI27IML5tTVVl1/ctaXgWjzYH/fLC5Z2V2SWtL5DF5SvrEJy/IFnlNdsmQMHJKfpCf5Jfz0fnkfHG+tlSnM7/ziPxnzve/IJj8uQ==</latexit>

ID hi
<latexit sha1_base64="elMSN46s2yMH68gD1TC/Ynkr21k=">AAAEk3icdZPNbtNAEMe3rYESPpqCOFVCFhUSB1Ql5QASlypOBFWE1FLiFsUhbNbjdOW1vdpZU0VWDhx4Fq5w41V4Bl6CjeN8tc5Kluc//9/MekfegRQcda32d2Nzy7p1+8723cq9+w8e7lR3H7mYpIpBhyUiURcDiiB4DB3NtYALqYBGAwHng9CZ+OffQCFP4k96JKEX0WHMA86oNql+dc87bnoCAk2VSq48QeOhAE/lr351v3ZQy5d9M6gXwf4ROf334+mfjyf93a2vnp+wNIJYM0ERu/Wa1C8xCGjExaiXUaU5EzCueCmCpCykQ+iaMKYRYC/LjzO2n5uMbweJMk+s7Ty7XJHRCHEUDQwZUX2J171Jsszrpjp408t4LFMNMZtuFKTC1ok9mY3tcwVMi5EJKFPcfKvNLqmiTJsJVjwfAq/VwDDzJq21zlqNcX8WYzgezxBZjsg54iw1ccp6uI6DS8xErsPkOmyx3Znb5v6cMmoBcX8GHTcRYEFN5cxstz6vuIVefMdSf9cpa98+k1f+EpXrMtB1ZLimmznRl7ICXFeAawpCXCkIsXwgUwQDMwyTLGYJOpVzI1ezgncQw9wxomhqBCwhWI7g/PeJ2QIxojhBgZg7Wb9+A28G7uFB/dXB4am5nDaZrm2yR56RF6ROXpMj8p6ckA5h5Dv5SX6R39YT663VsJpTdHOjqHlMVpb14T/vrZyO</latexit>

Select s
<latexit sha1_base64="x84GOB1aWWbsH1swQD1Of9rmM7c=">AAAHxHiclZVLb9NAEMe3BZoSHm3hCAeXFokDipL0ANyqLOWhqFIh1C1qQrTZjFPL64d219DIMgc+AR+DK3wbvg0bP9epc8BSnJ2Z3/5ndmzvTgJmC9lu/11bv3Hz1kZj83bzzt1797e2dx6Ywg85hVPqM5+fT4gAZntwKm3J4DzgQNwJg7OJgxfxs6/Ahe17n+Q8gJFLZp5t2ZRI5RpvPx4mGhP/KmITFkIcDYABlca+2I/H23vtVju5jOuDTjbYQ9l1Mt7Z+Dmc+jR0wZOUESEuOu1APheWRVybzUcR4dKmDOLmMBQQEOqQGVyooUdcEKMoqSU2nirP1LB8rn6eNBKvPiMirhBzd6JIl8hLsRxbOOtiF6G0Xo4i2wtCCR5NE1khM6RvLJpjTG2u1s7makAot1WtBr0knFCpWljJcpWW2mwOp2ANj3rCiYaLfFJGR714nI+FE8c5EtQjQYFgTQTXaZgYC41ZmKuwYBVWphuYfXtaUMoqIXuaQ+9fC4CSSs082D/6XIlmdlmHpm/iOvn+IPg21ajErgNNHDgr1NSKvtRNEKsmiBUTHFGZ4Ij6hqSIsFQzcmcP661UVl0CrLcD4zpEVBhRD5m42td6pSolVmD4WK/puA7p9YoF93pFDWX+8nVKMg7Gq0tTn0vGggyDQjaxcpm34EERUUb2DJQBGiLqEVF8bR4tEWVkdejIR5ip7RV4geWOMo3UHnZiaaE+zPWYMoueqv1XgunLch2lK4dOuE9BiAql+apaGC8pqcZWdbDvWTZ3l6Uyd6F2CdTRxVK7CC+JLM3+/1Tmci4zSZYQ6rxKttCIzTiZx1F6b7deKYEkwEBGjKvdJFK33YN2xT/joJ57lPztdqux9Bhb3BcRdYZ1lk+s6wOz2+octLofunuHRnaabaJH6Al6hjroBTpE79AJOkUU/UC/0G/0p/GmwRqiEabo+lo25yGqXI3v/wC4zNjY</latexit>

For i = 1, . . . , s
<latexit sha1_base64="sRkMV1JCEzIgcnwaLjkbo5SuiMA=">AAAEinicdZPPbtNAEMa3raElFEjLkYtFisQhiuJwgAohVXXDH+VSVOIWxSGs1+N25bW98qyByMqrcIVX4m3YJE7itM6e5pv5zbe7o11PCo6q3f63tb1j3Lu/u/eg9nD/0eMn9YNDB5MsZdBniUjSK48iCB5DX3El4EqmQCNPwKUX2tP65Q9IkSfxFzWWMIzodcwDzqjSqVH98H2Smkf8ndV0hZ8obOLRqN5ot9qzZd4NrCJokGKdjw52vrt+wrIIYsUERRxYbamaGAQ04mI8zGmqOBMwqbkZgqQspNcw0GFMI8BhPrvFxHyhM74Z6PMESazMWbbckdMIcRx5moyousHbtWmyqjbIVPBmmPNYZgpiNt8oyISpEnM6EtPnKTAlxjqgLOX6rCa7oSllSg+u5voQuN1TDHN3aq1U3j2djBYxhpPJApHViFwidsnErvJwbBtLzFRuwuQmbLXdhdPj/pLSagVxfwF9OkOAFTWXi2Kv+3WtWujVOUr+jl1l37uQP/0SNdNVoGPLcIObvtG3qgbc1IAbGkJcawixeiBzBAM9DJ0sZgkqk8vCTC0aPkAMy4oWhakWUEKwGsHl84nZCtGiuEGB6D9p3f6BdwOn07JetTqfO40Ts/ide+QZeU5eEou8JifkIzknfcLIL/Kb/CF/jX2jYxwbb+fo9lbR85SsLePsP0rDlAE=</latexit>

(SVKid, VCid, VC
id
pk, VCksid, BCK

id, sVCCid, (sCCidi)k
i=1, CM

id)

 Register(1�, Csk, VCCssk, (v1, . . . , vk))
<latexit sha1_base64="j08cjaOtd4yJ/prqzqtnDQHdDv8=">AAAINHiclZVbb9MwFMfTAesotw1ekHjJNjG1UqmaDQl4QJpqJkDVpMFYNtR0kZs4nRXnItvdqKJ8Ax74NHwXJN4QrzzwCXDuSZc+EKm2zzk//48vtT3xCWa83//RWLlx89Zqc+12687de/cfrG88VJk3owY6MTzi0bMJZIhgF51wzAk68ymCzoSg04kNovjpJaIMe+4nPvfR2IFTF1vYgFy49PWvO23tWB1is6upICl9O6ltFtUDEAeZCqJwW2NRreOOHuDXSnhudzVwiM2Opo2eKY4z3tEIsjik1LvSPqKpmACibeVcI2JIJhQwsyNtwETdvtSVrkZMj7PupW53Ovr6dr/Xjz/5ekNJG9tS+h3pG6vfNNMzZg5yuUEgYyOl7/MusyzoYDIfB5BybBAUtrQZQz40bDhFI9F0oYPYOIjXL5SfCo8pWx4VP5fLsbfcI4AOY3NnIkgH8gu2GIucdbHRjFsvxwF2/RlHrpEksmZE5p4cbYZsYooMTuaiAQ2KxVhl4wJSaIhVq2b5kgy11dJMZGkHA2YHWpSP8+BgEOpZm9lhmCF+PeLnCCiJgDqNZJ9yJjKXYf4yrEgX/81ySlgFhM0Mev+GIVRQiZkFhwefK9HULsZR0ldBnfzw2L8yS1Rs14HJMahVEzM6r+vAlnVgSzpEB6zUwWb1C5IgzBKLkTnjQ5l3FVZdAlBeDgDqEFZhWD2kguq61itVKbYEi+6KYkyHdchgkE94MMjHUOQv/k5xxmN9+dDEcUlZxGd+Lhtbmcxb5KI8Iox0D4SBSgirR1h+2lyjQISRjqOMZLdhjmWOIg0vbXZslUJDNC/HhJmvqbjvOVI9XsyjcGXQEfUMxFiFKvmqWgAsKImFreoAz7UwdRalUneudoEMuyyW2Hl4QWSh9/+nUhdzqXGymBDvY3yFBmRK4TwMkrLfeyUE4gBBPCBU3CaBKDb3+hX/lCKx70Fcbe5WYxMyQ2EQlVFEvGHK4ot1vaHu9pS93u6H59v7cvqarUlPpC2pLSnSC2lfeicdSSeSIf1tPG5sNraa35s/m7+avxN0pZH2eSRVvuaff0We/pY=</latexit>

ID ID || h(VCid, VCidpk, VCksid, CMid)i
<latexit sha1_base64="YZxmtr4QniRT164kQnvAoY+yvCE=">AAAFb3icdZTNbtNAEMe3pYESvlKQ4IBUWVRIrRRFSTnAscStoIoi9YOmRXGINutxuvL6QztrqijNkWfhFXgJriCegRNvwDqxHTd1VrI9/5nfzO6OVzsIBUdVr/9ZWb2zVrp7b/1++cHDR4+fVDaedjCIJIMzFohAXgwoguA+nCmuBFyEEqg3EHA+cM04fv4VJPLA/6RGIfQ8OvS5wxlV2tWvvLcO9y0BjqJSBlexqF5fW1VLUH8oYNvqmNyu6nfozr4uxl+zze0dS06ZfmWrXqtPh3HbaCTG1h45/vtt88fJUX9j7bllByzywFdMUMRuox6qKjoO9bgY9cZUKs4ETMpWhBBS5tIhdLXpUw+wN55uemK81h7bcAKpH18ZU28+Y0w9xJE30KRH1SUuxmJnUawbKeddb8z9MFLgs9lETiQMFRhxBw2bS2BKjLRBmeR6rQa7pJIypftctmxwrIMmumMrLq3U+KA56ac2upNJioTFSJghZq6IWVSjY5qYY2K5DAuXYfPpTjstbmeUVnOI2yl0uI8Ac2om02Dr4PONaKLn68jV75hF5Vun4ZWdo6a6CJydyMJqekdfihJwWQIuSYjPei7BxeKGzBB0dDNSZ9PMt1Kr4glu9sMsgjCGeEbhAtXn6Vlp52qZ7YVSyQ8GFYXZaqcqneYD+JBFtEh2qgXkECxGMDvTPpsjWiSryCMnMNSXGsgMSx0a0DdJY/HeuG10dmuNN7XdY32lGGQ21slL8opskwZ5S/bIR3JEzggj38lP8ov8XvtXelHaLCXs6kqS84zcGKWd/x1M8Wo=</latexit>

SVKid, BCK
id, sVCCid, (sCCidi)k

i=1
<latexit sha1_base64="FEAnjLbfdDUsRLd+yZmXcLtejTI=">AAAFonicdZTLbtNAFIanpYYSbikskZBFQRSpipKygA1SFRNxiSo1DXGL4tSajMfpyLeRzxgUWV6y5GnYsIAH4Rl4CSaO7TipPZI15z/nO2dunplyl4Fot/9ubd/YUW7e2r3duHP33v0Hzb2HOgRRSOiIBG4QXkwxUJf5dCSYcOkFDyn2pi49nzraIn7+lYbAAv+zmHM68fDMZzYjWEiX2XxhDPU+sw6NrpZ2oGua7A8MWPTspRmzt53k0jGb++1WO23qdaOTGfvHaPDv+5NfZ6fm3g4xrIBEHvUFcTHAuNPm4hBsG3vMnU9iHApGXJo0jAgox8TBMzqWpo89CpM4XVqiPpceS7WDUH6+UFNvOSPGHsDcm0rSw+IKNmMLZ1VsHAn7zSRmPo8E9clyIDtyVRGoi31SLRZSIty5NDAJmZyrSq5wiImQu9kwLGobvS44sbEoLUTc6yZmboOTJDnCqxFeIFqpiFZVQ54IlJiFrMN4HbYaLj3ugpJqBTErhz6+A0pX1FLmwX7vy1o006t5lOrrWlX5/pB/s0pUqqtAXeNOTTW5osuqBKhLgJoEB9YSHKjekCUCttyM3JlemSJVqqoB0mu0OmBtjTFZRsE6BnVcejvLZ1w1JKxTUINpJyVIO9lAGtnvQkXEi7WnKs9/T31aRKTI9k0KWkKgGoHihvhkhUiRTaOMnNGZfAhpWGC5I0nks9TZfISuG/pRq/OqdTSQ75OKlm0XPUZP0QHqoNfoGH1Ap2iECPqBfqLf6I/yTPmkDJThEt3eynIeobWmGP8BYF8FIQ==</latexit>

ID
<latexit sha1_base64="ZR6npSWX9naEG7efqqpy55E52EQ=">AAAFL3icdZTNbtNAEMe3xUAJH20BceFiESFxQFVSDnCjihuVKqpUCHGL4hBt1uN05a+VZw0KVh6BK7wAZySeBnFBcOQtWCe246TOSpbmP/Ob2dnxakfC4ygbjV8bm1e0q9eub92o3bx1+872zu5dE8M4YtBjoRdG5yOK4PEAepJLD85FBNQfeXA2co00fvYBIuRh8FZOBAx8Og64wxmVytW1jg+HO/XGXmO29MtGMzPqL799+nv0/X5yOtzVHlh2yGIfAsk8ithvNoR8io5Dfe5NBgmNJGceTGtWjCAoc+kY+soMqA84SGZNT/XHymPrThipL5D6zFvOSKiPOPFHivSpvMDVWOqsivVj6bwYJDwQsYSAzTdyYk+XoZ5OQLd5BEx6E2VQFnHVq84uaESZVHOqWTY4VruFbmKlpaVM2q3pMLfRnU5zRFQjokCMUhGjqoZpGFhiUrkOE+uwxXZds8PtglJqAXE7h44PEWBBzWUe7LTfLUUzveijVN80qsp3uuKjXaJmugo0DeGuqaZO9L4qAdcl4JoEF5cSXKweyBxBRw0jd7aM8iiVqt5geR5GFYQpxAsKV6ghz+/KSamWcbJSKvvBIGNRdDtT+TZHEEARUSI7qRJQQrAaweJOB2yBKJF1UUbewFg9ShAVWO5QgHpJmqvvxmXD3N9rPtvbf92oH+hkvrbIQ/KIPCFN8pwckFfklPQII2PymXwhX7Uf2k/tt/Znjm5uZDn3yNLS/v0H0vndDg==</latexit>

Figure 2.1: Overview of the pre-election sub-protocol. Deviations from the protocol de-
scription in [3] are highlighted in red (modified parameters), blue (addi-
tional parameters), and yellow (unused parameters).

18

Nr. Algorithm Description of Check

S1 Setup RSA key generation is implemented properly.

S2 Register The algorithm Register is called exactly s times.

S3 Register The key derivation function δ is implemented properly. The two
salts IDseed and KEYseed are different.

S4 Register The symmetric encryption of VCidsk, sCCidi , and psVCCid||SVCCidq
is implemented properly using a current standard such as AES-
GCM.

S5 Register The keyed pseudo-random function fk is implemented properly,
for example as HMAC based on SHA256.

S6 Register The randomly selected short choice codes sCCidi are checked for
uniqueness.

S7 Register The tables CMid are shuffled before sending them as part of ID to
BBM. The shuffling algorithm selects the permutation uniformly
at random from all k! possible permutations.

S8 Register The computation of the values CCidi and VCCid is implemented
according to the protocol.

S9 Register The creation of the signature SVCCid is implemented properly ac-
cording to the RSA-PSS standard.

Table 2.2: List of checks relative to the pre-election algorithms Setup and Register.

The signature key pair pVCCspk, VCCsskq are RSA keys of the form VCCspk “ pe, nq and
VCCssk “ pd, nq for values n “ pq and e, d P Zφpnq satisfying ed mod φpnq “ 1. Generating
RSA keys is a subtle procedure with several pitfalls. Most importantly, p, q P P should
primes of equal or almost equal bit length, which are picked uniformly at random, but
such that they do not lie too close to each other. If primality of p and q is tested using a
probabilistic primality test, then the algorithm’s failure probability should be less than
1
2λ
. Furthermore, ‖pq‖ should depend on the security parameter 1λ and be consistent

with current key length recommendations (for example 2048 bits or more for λ “ 112).
For improved efficiency, small (but not too small) values e are acceptable, for example a
constant value such as e “ 65537.

2.2.2 Algorithm Register

This is one of the most critical algorithms in the AVP. Its goal is to prepare the cryp-
tographic data necessary to achieve individual verifiability in the voting process. The
algorithm is thus called for all s voters and in each run, the output will always be a
different one. Obviously, it is critical to call Register exactly s times, i.e., at least s times

19

to provide a voting card to every voter and at most s times to avoid ballot stuffing.

The first step of Register is the generation of the random start voting key SVKid, which is
the value that the voter enters to start the voting process. Two values VCid and KSpwdid
are derived from SVKid using the key derivation algorithm δ (see check G2 in Table 2.1)
with two different salts called IDseed and KEYseed, respectively.5 The value KSpwdid
is then used as a symmetric key to encrypt the private key of an ElGamal key pair
pVCidpk, VC

id
skq into a keystore VCksid. During vote casting, knowledge of SVKid is sufficient

to derive VCid and KSpwdid and therefore to decrypt the keystore into VCidsk. This is the
protocol’s main voter authentication mechanism.

In the second step of Register, long choice codes CCidi and short choice codes sCCidi are
generated for all voting options i P t1, . . . , ku. The computation of CCidi involves an
exponentiation in Gq and an application of the keyed pseudo-random function fk (im-
plemented as HMAC based on SHA256). Corresponding short choice codes sCCidi are
picked at random and checked for uniqueness. They are encrypted using CCidi as sym-
metric encryption key and pairs pHpCCidi q,EncspsCCidi , CC

id
i qq are stored in a table CMid.

This table will be used during vote casting to map long choice codes CCidi into short codes
CCidi , which are then presented to the voter. To guarantee vote secrecy in this process, it
is crucial to shuffle this table, because otherwise submitted votes can be easily linked to
the selected voting options using only the order of the entries in CMid. Surprisingly, this
important aspect is not discussed in [3].

The table CMid contains an additional entry for corresponding vote cast codes VCCid (long)
and sVCCid. Similarly to CCidi , VCCid is derived from a randomly picked value BCKid using
the keyed pseudo-random function fk. This computation involves mapping BCKid into
an element of Gq (by squaring it modulo p) and raise it to the power of VCidsk. A RSA
signature SVCCid of sVCCid is created using the private RSA key VCCssk. The signature is
added to the entry for VCCid in CMid (using concatenation).6

2.3 Election Phase

The election phase can be regarded as the protocol’s core. It consists of three commu-
nication round trips from the voter (respectively the VD) to the BBM and back. The
first round (upper part of Figure 2.2) realizes the voter authentication, which consists in
presenting the start voting key SVKid to the BBM. In case this key exists in the list ID,
the BBM returns the voter’s personal key store VCksid to the VD, from which the private
vote casting key VCidsk is extracted. In the second round (middle part of Figure 2.2), VCidsk
is used to submit the ballot V containing an encryption of the voter’s choices pj1, . . . , jtq
to the BBM. Along with this encryption, V contains so-called partial choice codes pCCidi ,

5The salt of key derivation function and the seed of a PRNG should not be mixed up. These are
two completely different concepts and serve for different purposes.

6The purpose of this signature remains unclear in [3], especially because no signatures are created
for the short choice codes sCCidi .

20

from which the BBM can compute the long choice codes CCidi in the same way as the
Register algorithm during the pre-election phases. V also contains three different zero-
knowledge proofs πsch, πexp, and πpleq, which tie all submitted values together. If the
ballot is well-formed and the proofs are all valid, BBM uses the voter’s mapping table
CMid to derive short choice codes sCCidi from the long ones. They are sent back to VD,
which presents them to the voter for comparing them with the codes printed on the voting
card. In case of a full match, the voter initiates the third round (lower part of Figure 2.2)
by entering the ballot casting key BCKid to confirm the submitted ballot. Using VCidsk, VD
computes the confirmation message CMid, which is forwarded to the BBM. In a similar
way as for the choice codes, BBM first computes the long vote cast code VCCid and then
selects the short vote cast code sVCCid from the mapping table CMid. Sending sVCCid to
VD and presenting it to the voter is the last step of this phase.

Similar to the pre-election phase, we also encountered some inconsistencies in the formal
description of the election phase. Here is the list of the issues we found and some remarks
of how we decided to best deal with them:

• The voting device requires VCidpk, EBpk, and pv1, . . . , vkq for calling the CreateVote
algorithm.

• The voter’s choices are best represented by the set tj1, . . . , jtu of the indices of all
selected candidates. Assuming from voters to provide corresponding prime numbers
vji P Gq—as suggested in the protocol description—is not realistic from a usability
point of view. The set tj1, . . . , jtu is therefore a more appropriate input to the
CreateVote algorithm.

• Algorithm ProcessVote requires EBpk as additional parameter.

• Algorithm CreateCC requires t as additional parameter.

• Parameters VCid and V are unused in the algorithm Confirm.

• Updating the BB with entries psVCCid, SVCCidq does not link them to corresponding
entries pVCid, Vq containing the votes. We propose to use VCid as identifier for every
type of entry in BB.

• Each ballot V created by CreateVote contains three different non-interactive zero-
knowledge proofs. We observed that the first proof is redundant in the light of the
two other proofs (see Footnote 7).

We also detected a subtle problem with the proposed way of responding to incoming
ballot submissions. In the procedure depicted in the middle part of Figure 2.2, suppose
that the submitted vote V passes all tests of ProcessVote, but not all tests of CreateCC
(if two referendums are held in parallel, such a ballot can be constructed easily, for ex-
ample by submitting two votes to the first and zero votes to the second referendum).
While such a ballot is clearly invalid, nothing speaks against allowing the voter to sub-
mit another ballot, for example from a different voting device. But since the proposed
procedure updates BB before calling CreateCC, re-submitting a (valid) ballot would be

21

Voting Device
<latexit sha1_base64="EZ25uUieZxc6OMseZ14Tw2EL3oE=">AAAB/3icbVA9SwNBEN2L3zFqVLCxWYyCVbjTQq0UtLCMYBIlCWFvM5cs2ds7dufEcKbwr9hYKGLr37Cz8Afon9BNYuHXg4HHezPMzPNjKQy67ouTGRufmJyansnO5ubmF/KLSxUTJZpDmUcy0mc+MyCFgjIKlHAWa2ChL6Hqdw8HfvUCtBGROsVeDI2QtZUIBGdopWZ+pY5wiX6QViIUqk2P4EJw6DfzBbfoDkH/Eu+LFPY/3vbeX89zpWb+ud6KeBKCQi6ZMTXPjbGRMo2CS+hn64mBmPEua0PNUsVCMI10eH+fblilRYNI21JIh+r3iZSFxvRC33aGDDvmtzcQ//NqCQa7jVSoOEFQfLQoSCTFiA7CoC2hgaPsWcK4FvZWyjtMM442sqwNwfv98l9S2Sp628WtE7dwsE5GmCarZI1sEo/skANyTEqkTDi5Ijfkjtw7186t8+A8jlozztfMMvkB5+kTdrGavQ==</latexit>

Bulletin Board
Manager

<latexit sha1_base64="1gIprjb5pYO9Lfl2AUyXRV/DTvE=">AAACIXicbVDLThtBEJwlgRCeJhxzGcVB4gDWrjmEI4JLLpFAirEl78rqHffaI8/MrmZ6EdbKv8EP8BtcQcot4gb8TMbGBx4paaRSVbdqutJCSUdh+BAsfPi4uPRp+fPK6tr6xmZt68u5y0srsCVyldtOCg6VNNgiSQo7hUXQqcJ2OjqZ+u0LtE7m5jeNC0w0DIzMpADyUq8WxgINoZVmEBNeUppVx6VSSNLw4xxsP467+5HWyS8wMEA76dXqYSOcgb8n0ZzU2Rynvdpj3M9FqX2MUOBcNwoL2nNZBlqqcVKBJSkUTlbi0mEBYuRjup4a0OiSanbihO94pc+z3PpniM/UlxsVaOfGOvWTGmjo3npT8X9et6TsMKmkKUpCI56DslJxyvm0L96XFgWpsScgrPR/5WIIFoQvzfkyorenvyfnzUZ00GieNetH3+e1LLOv7BvbZRH7wY7YT3bKWkywK3bDbtldcB38Cf4G98+jC8F8Z5u9QvD0D8xZpMI=</latexit>

Voter
<latexit sha1_base64="WO/fMOnsnk1fH43+e1M/LtKMKjY=">AAAB/XicbVDLSgNBEJyNrxhfUY9eFqPgQcJuPOjNgBePEcwDkjXMTnqTIbMPZnrFZQn+hnpT8CCIV79Fv8bZJAdNLGgoqrrp7nIjwRVa1peRW1hcWl7JrxbW1jc2t4rbOw0VxpJBnYUilC2XKhA8gDpyFNCKJFDfFdB0hxeZ37wFqXgYXGMSgePTfsA9zihq6aaDcIeulzZCBDnqFktW2RrDnCf2lJTO3x4zPNW6xe9OL2SxDwEyQZVq21aEx8rzqM9F4qRUImcCRoVOrCCibEj70NY0oD4oJx2fPzIPtdIzvVDqCtAcq78nUuorlfiu7vQpDtSsl4n/ee0YvTMn5UEUIwRsssiLhYmhmWVh9rgEhiLRhDLJ9a0mG1BJmQ5D6TDs2dfnSaNStk/KlSurVD0gE+TJHtknR8Qmp6RKLkmN1AkjkjyQZ/Ji3BuvxrvxMWnNGdOZXfIHxucPTV+bBQ==</latexit>

SVKid
<latexit sha1_base64="/c8W2Q2B2cGir4Tfpz3v3lXnUlE=">AAAFf3icdZRLb9NAEMc3pYYSHm2BGxeLCMEBRU45ACeqLFFBUaVCiVtUh2izXqeLn/KsQcHyd+AKZ858H458EzaOn6m9kqX5z/xmZnds7zxwOAhN+9vZuratXL+xc7N76/adu7t7+/d08KOQsgn1HT88nxNgDvfYRHDhsPMgZMSdO+xsbuNV/OwrC4H73kexDNjUJQuPW5wSIV26caqPuTnb62l9LV3qVWOQGb3Xv7//O/rzID6Z7W9Tw/Rp5DJPUIcAXAy0QDwDyyIud5bTmISCU4clXSMCFhBqkwW7kKZHXAbTON13oj6WHlO1/FA+nlBTbzUjJi7A0p1L0iXiEjZjK2dT7CIS1stpzL0gEsyj60ZW5KjCV1dDUE0eMiqcpTQIDbncq0ovSUiokKPqGiazjNEQ7NhYlRYiHg2TWW6DnSQ5EjQjQYHgShHcVEPHGCrMSrZhQRtWtkvfZkFJVULczKF3b4CxklrLPDgefapFM13uo1Jfx03lx6fBN7NCpboJ1HFgt1STJ/rclABtCdCSYEMtwYbmgawRsOQwcucQV0cpVVMDLMfByxeMa8yMZxTUMWjjdFyfLm5qCXUKWjB8XIHw8QbSzT4XJqKgOHuq8vwj5rEiIkU2NylYBYFmBIo/xKMlIkW2jSrygS3kLcfCAssdSSKvpcHmJXTV0A/6g+f9g/da71BF67WDHqJH6CkaoBfoEL1FJ2iCKPqCfqCf6JfSUZ4ofUVbo1udLOc+qi3l1X9pUPlo</latexit>

VCid GetID(SVKid)
<latexit sha1_base64="gOSSSHno/7K88SEuPMof96s+3u0=">AAAGa3icdZRbSxtBFMdHW1Ob3rS+9cZSESwUSSy0fRRHsRIEL3W1uDFMZs/qkL0xZ7YSQp5KP0xf25d+lX6G0u/QyWavcXcgcP7n/M6ZmTPZ0w9dgarV+jM3f+fuQuPe4v3mg4ePHj9ZWn5qYhBJDqc8cAN53mcIrvDhVAnlwnkogXl9F876AzqJn30FiSLwP6thCF2PXfnCEZwp7eotvbRMKmzLBUcxKYMbaw/U/s66dWJ2hP2mt7Ta2mjFy7httBNjdYsc/f3+6vfxYW954b1lBzzywFfcZYgX7Vao3qLjME+4w+6ISSW4C+OmFSGEjA/YFVxo02ceYHcUX2hsrGmPbTiB1D9fGbG3mDFiHuLQ62vSY+oaZ2MTZ1XsIlLOx+5I+GGkwOfTjZzINVRgTLpj2EICV+5QG4xLoc9q8GsmGVe6h03LBsfa3cbByJqUVmq0uz3upTYOxuMUCauRMENooQitqmFSigVmIuuwsA7Lt4ufM6O0yiFhp9D+DgLk1FSmwc7ul1I00fk5CvVNWlW+cxLe2AUq1lWgScNBTTV9o8uqBKxLwJqEAZYSBljdkCmCjm5G6tymxVZqVbUB1e0Q+QPTEtMTCYVlDOs4k5a7S6u2xDKFNRg9KED0YAZpJn8XUFGY3T1Waf4e+JBFtEj6pgUUEKxGMPtCfJ4jWiTHKCLHcKXHH8gMSx35NqrwQLEqhDowLMa0zDqg56MCM1D5PXJXCh3KgANiiSr4yrUonamkW1+uQwPfEdKbLZW4NawnbXt2rt42zM2N9ruNzSM9cg0yXYvkOXlN1kmbfCBb5BM5JKeEk2/kB/lJfi38a6w0njVeTNH5uSRnhZRWY+0/EKVUnA==</latexit>

VCid
<latexit sha1_base64="IW4EeVUr0yszdCx+8CXBIieWTfY=">AAAGUXicdZRLb9NAEMe3hYSS8miBGxeLCIkDqpIiATeqLlVBUaVAiVvUhGizHqcrP+VZg4KVz8AV7pz5Mpw48jG4sUn8WKf2SpbmP/Obmd2xvZPQFSg7nT8bm9euN5o3tm62tm/dvnN3Z/eeiUEccRjwwA2i8wlDcIUPAymkC+dhBMybuHA2cegifvYZIhSB/0HOQhh5bOoLW3AmlWswNKmwxjvtzl5nuYyrRjc12q9+fv17/OtB0h/vNp4PrYDHHviSuwzxotsJ5VO0beYJdzZKWCQFd2HeGsYIIeMOm8KFMn3mAY6S5bbnxmPlsQw7iNTjS2Pp1TMS5iHOvIkiPSYvcT22cFbFLmJpvxwlwg9jCT5fNbJj15CBsZiBYYkIuHRnymA8EmqvBr9kEeNSTao1tMAeHh2ikwwXpaVMjg7n48xGZz7PkLAaCXOEakVoVQ2TUtSYhazDwjqsaHdq9oSVU0oVkLAy6O1rBCiolcyCvaOPpWiqi31o9U1aVb53Gn6xNGqpq0CThk5NNXWiT1UJWJeANQkOlhIcrB7ICkFbDSNzHlJ9lEpVNaBqHKJ4wbTEjEVKYRnDOs6k5enSqpZYprAGoycaRE/WkFb6uYCMw/zsS5XlH4MPeUSJdG5KgIZgNYL5H+LzAlEi3YaOvIepuuQgyrHMUbSR2gtaKi3Ug5keUzKfgLoFJZiBLM5RuDKoHwUcEEuU5ivXonStkhp9uQ4NfFtE3nqp1K1gddN21+/Vq4a5v9d9trf/rtM+MMhqbZGH5BF5QrrkBTkgb0ifDAgngnwj38mPxu/GvyZpbq7QzY005z4preb2f/uGTGo=</latexit>

VCksid, VC
id
pk, EBpk, (v1, . . . , vk), t

<latexit sha1_base64="DrsmQ4usOpJb0rwLYQfup3vKcxM=">AAAGdnicdZRLb9NAEMe3hYYSHm3hiFRZVBVFiqqkSMCx6lIBiir1Qd2iJlib9Thd+SnPuiiKcuTKp+HABb4Hn4EvwJF14sc6dVayPP+Z38zujtc7iDyBst3+s7R85+5K497q/eaDh48er61vPDExTGIO5zz0wvhywBA8EcC5FNKDyygG5g88uBi4NI1f3ECMIgw+yVEEfZ8NA+EIzqRyWes7PZO6KOyWekdu+j48iNzWzo3VafU8O5TYurHcly1prW+1d9vTYdw2OpmxtU9O/n7b/Hl6bG2svO7ZIU98CCT3GOJVpx3JFjoO84U36o9ZLAX3YNLsJQgR4y4bwpUyA+YD9sfTvU2MbeWxDSeM1RNIY+rVM8bMRxz5A0X6TF7jfCx11sWuEum87Y9FECUSAj6byEk8Q4ZG2ijDFjFw6Y2UwXgs1FoNfs1ixqVqZ7Nng6Nahe64l5aWcnx4MLFyG93JJEeieiQqEKoVoXU1TEpRY1K5CIsWYeV0Z2ZX2AWlVAkJO4c+vkOAkprJPNg9/FyJZrpch1bfpHXlu2fRV1ujproOnB3K2mpqR1/qEnBRAi5ISI+/luBifUNmCDqqGbnzgOqtVKpuAqraIcoPTCuMJTIKqxgu4kxa7S6tmxKrFC7A6JEG0aM5pJkdF5BJVOx9qvL89xBAEVEi65sSoCFYj2DxhwS8RJTIlqEjpzBUNyHEBZY7ymmk9oGmSgt1YaTHlCw6oK5KCWYoy32Urhw6jkMOiBVK81VrUTpXSbW+WoeGgSNif75U5lawumk78/fqbcPc2+282t07UVeuQWZjlTwjz8kO6ZA3ZJ98IMfknHDynfwgv8jvlX+NzcZ248UMXV7Kcp6Symi0/wPj5lgv</latexit>

Select (VCid, VC
id
pk, VCksid, CM

id) from ID
<latexit sha1_base64="LxfdHl21OfLiYf5hMcwfyMwVIgY=">AAAGf3icdZTbbhMxEIbdQkMJpxYuuVnRIIpURUmQONxVcSOookqF0m1RN0SOd7a19iiPFxRFeQ6ehlt4Bt4Gb7LHdGMp2flnvhnbs15PIk+g6nT+bWzeubvVuLd9v/ng4aPHT3Z2n5oYxpLDOQ+9UF5OGIInAjhXQnlwGUlg/sSDi4lLk/jFD5AowuCrmkYw8tl1IBzBmdKu8U73DDzgymjtWyYV9oH+j9zl08XkSU+E/bplODL0jZZ1fNQa7+x12p3FMG4b3dTYI+k4He9uvbXskMc+BIp7DPGq24nUAToO84U3Hc2YVIJ7MG9aMULEuMuu4UqbAfMBR7PFJufGS+2xDSeU+hcoY+EtZ8yYjzj1J5r0mbrB1VjirItdxcp5P5qJIIoVBHw5kRN7hgqNpGOGLaTukDfVBuNS6LUa/IZJxpXua9OywbEGfXRnVlJaqdmgPx9nNrrzeYZE9UiUI7RUhNbVMCnFEpPIdVi0DiumOzOHws4prQpI2Bl0fIQABbWUWXA4+FaJprpYR6m+SevKD8+in3aJWug6cHksa6vpHX2vS8B1CbgmITnwpQQX6xuyRNDRzcicfVpupVZ1E1DdDlG8YFphxiKlsIrhOs6k1e7SuimxSuEaLPnGi4WdrCDN9LiAiqN87wuV5X+EAPKIFmnftIASgvUI5l9IwAtEi3QZZeQLXOsrEWSOZY5iGlV6QQtVCg1hWo5pmXdA35kKzFAV+yhcGXQqQw6IFarkq9aidKWSbn21Dg0DR0h/tVTq1rC+abur9+ptw+y1u2/avc+9vUMjvXO3yXPyguyTLnlHDsknckrOCSe/yG/yh/xtbDReNdqNzhLd3EhznpHKaHz4D9kdVk0=</latexit>

VCidsk GetKey(SVKid, VCksid)
<latexit sha1_base64="d7bycv5jt/MjDAp08uaRajF9JUQ=">AAAGdnicdZRLbxMxEMfdQkMJrxaOSNWKqqJIVZUUCThWNVVBUaU+6LaoGyLHO9ta+5THSxVFOXLl03DgAt+Dz8AX4Iiz2We6aynS/Gd+M7bHmxlGnkDV6fxZWLxzd6l1b/l++8HDR4+frKw+NTGMJYczHnqhvBgyBE8EcKaE8uAiksD8oQfnQ5dO4+dfQaIIg09qFEHfZ1eBcARnSrsGK5uWSdEVtuWBo5iU4Y11AKoHo03r1OwJe0vHXRT2q8HKeme7kyzjttFNjfVdcvz329rPk6PB6tIbyw557EOguMcQL7udSG2h4zBfeKP+mEkluAeTthUjRIy77AoutRkwH7A/Tu42MTa0xzacUOpfoIzEW84YMx9x5A816TN1jfOxqbMudhkr511/LIIoVhDw2UZO7BkqNKaNMmwhgStvpA3GpdBnNfg1k4wr3c62ZYNj7e+hO7ampZUa7+9NBpmN7mSSIVE9EuUILRWhdTVMSrHETGUTFjVhxXbJs+aUVgUk7Az6+B4BCmoms2Bv/3MlmuriHKX6Jq0r3zuNbuwSleg60KSR21BN3+hLXQI2JWBDwvTzLiW4WN+QGYKObkbm3KPlVmpVtwHV7RDFA9MKMxAphVUMmziTVrtL67bEKoUNGD0sQfRwDmmnnwuoOMrvnqgs/wACyCNapH3TAkoI1iOY/0MCXiBapMcoIydwpSchyBzLHMU2qvRAiSqF9DQrx7TMO6BHpQIzVMU9ClcGHcmQA2KFKvmqtSidq6RbX61Dw8AR0p8vlbo1rCdtd36u3jbMne3u6+2d4+76rkFma5k8Jy/IJumSt2SXfCBH5Ixw8p38IL/I76V/rbXWRuvlDF1cSHOekcpqdf4DrqlZUQ==</latexit>

{j1, . . . , jt}
<latexit sha1_base64="DvEccaoON61di5c0N/rAPwWGFN4=">AAAGYHicdZRLb9NAEMe3hYYSHn1wAwlZVEgcqiouEnCsulSAokp9ULeoDtZmPU63fsqzBiIrR74GV/gIfBWuXPkSbBI/U3slS/Of+c3M7tjeYeQJlL3en6XlW7dXOndW73bv3X/wcG19Y9PAMIk5nPHQC+OLIUPwRABnUkgPLqIYmD/04Hzo0mn8/AvEKMLgoxxHMPDZKBCO4Ewql7W+aabXlr5tenYocfvakubEWt/q7fRmS7tp6JmxtUeO/31/+vvkyNpYeWXaIU98CCT3GOKl3ovkNjoO84U3HqQsloJ7MOmaCULEuMtGcKnMgPmAg3R2ion2XHlszQlj9QRSm3mrGSnzEcf+UJE+k1e4GJs6m2KXiXTeDFIRRImEgM8bOYmnyVCbjkSzRQxcemNlMB4LtVeNX7GYcakG1zVtcMyDfXRTc1payvRgf2LlNrqTSY5EzUhUILRShDbVMCjFCjOVbVjUhpXtTo2+sAtKqRISdg59eIsAJTWXebB/8KkWzXS5j0p9gzaV759GX+0KNdNNoEEjt6WaOtHnpgRsS8CWBBdrCS42D2SOoKOGkTv3aXWUSjU1oGoconzBtMZYIqOwjmEbZ9D6dGlTS6xT2ILRwwpEDxeQbva5gEyi4uwzlee/gwCKiBLZ3JSACoLNCBZ/SMBLRIlsG1XkBEbqzoO4wHJH2UZWXtBMVUJ9GFdjShYTUJeiBCOU5TlKVw4dxSEHxBpV8dVrUbpQSY2+XoeGgSNif7FU5lawumn1xXv1pmHs7ugvd3aP9a09jczXKnlCnpEXRCevyR55T47IGeHkG/lBfpJfK387q521zsYcXV7Kch6R2uo8/g89xFCF</latexit>

V CreateVote(VCid, {vj1 , . . . , vjt}, VCidpk, VC
id
sk, EBpk)

<latexit sha1_base64="a9tasKVU2O0mbfu/bo8Ec5rIo+U=">AAAGpXicdZTLbtNAFIanhaYl3FpYsrGoEEWKqqRIwLLqUAGKKhXauoU6WJPxcTv4Kp9xq8jygkfhGVjzIKzZwjswcXxNnZGizH/Od87M/LZnHLoCZb//e2n51u2Vzurane7de/cfPFzfeKRjEEccTnjgBtHZmCG4wocTKaQLZ2EEzBu7cDp26DR/egURisA/lpMQRh678IUtOJMqZK6fGh6Tl1Imemq4YEsWRcG1QVULCXogYcvQqbB6RnJlJt/MQdozXCuQ2MukTA0V0GnoTBGdYva/vxc6L8z1zf52Pxvazckgn2zuLv/4/mX159GhubHyyrACHnvgS+4yxPNBP5Q9tG3mCXcySlgkBXch7RoxQsi4wy7gXE195gGOksyKVHumIpZmB5H6+VLLovWKhHmIE2+syOnBcT43DbblzmNpvxklwg9jCT6fLWTHriYDbeqrZokIuHQnasJ4JNReNX7JIsalcr9rWGArY9BJCr/391KzmKOTpgUStiNhidBaE9rWQ6cUa8xULsLCRVi13JE+FFZJKVVBwiqgD28RoKJmskgO9z83srmu9lHrr9O29sOj8NqqUZluA2evYms3daKvbQW4qAAXFDjYKHCw3ZAZgrYyowju0bqVSrUtQJUdonrAtMGYIqewieEiTqdNd2nbktikcAFGD2oQPZhDuvnrAjIOy7Nnqqh/Bz6UGSVy35SAGoLtCJZfiM8rRIl8G3XkE1yoixOiEisC1TKy9oAyVUsNYVLPKVk6UF6LJVCFCugwCjggNqharNmL0rlOyvpmHxr4toi8+VZ5WMHqph3M36s3J/rO9uDl9s5HdeVqZDbWyBPylGyRAXlNdsl7ckhOCCe/yB/yl/zrPO8cdI47+gxdXsprHpPG6Jj/Aepsa+0=</latexit>

VCid, V
<latexit sha1_base64="bVWyfHgm0TYLGJOv6US6yhD8ZUw=">AAAGXnicdZRNb9NAEIa3hYQSKE3hgsTFokLiEFVJKwE3qi4VoKhSocQtSkK0WY/TlT/lWRdFUc78Ca7wn7hx4Mgf4MYm8cc6tS1Fmnfmmdnd1/GOQ1egbLd/bWzeul2r39m627h3f/vBTnP3oYlBHHHo8cANossxQ3CFDz0ppAuXYQTMG7twMXboon5xDRGKwP8kpyEMPTbxhS04kyo1ajYHJhVWa+AxeSXlzJyPmnvt/fbyMW4GnSTYe/3vm/jb+gNno93ai4EV8NgDX3KXIfY77VC20LaZJ9zpcMYiKbgL88YgRggZd9gE+ir0mQc4nC3PMDeeqYxl2EGkfr40llm9Y8Y8xKk3VuRir7heWyTLav1Y2q+GM+GHsQSfrxayY9eQgbEwxLBEBFy6UxUwHgm1V4NfsYhxqWxrDCywByfH6MxSi06O56M0Rmc+T5GwHAkzhGpDaNkMk1LUmIWswsIqLF/u3OwKK6OUyiFhpdD7NwiQUyuZFrsnnwvVROf70OabtGx89zz8amnUUpeBJg2dimnqRF/KGrCqASsaHCw0OFhuyApBW5mRJo+pbqVSZQtQZYfIXzAtMCORUFjEsIozadFdWrYkFimswOipBtHTNaSR/F1AxmF29qVK+9+CD1lFicQ3JUBDsBzB7AvxeY4okWxDRz7CRN14EGVYmsiXkdoLWiqt1IWpXlMyc0BdiRLMQObnyFMpdBYFHBALlJYrzqJ0bZKyvjiHBr4tIm99VJJWsLppO+v36s3APNjvHO4ffGjvHRlk9WyRJ+QpeU465CU5Iu/IGekRTq7Jd/KD/Kz9rtfr2/WdFbq5kfQ8IoWn/vg/R4tROQ==</latexit>

v ProcessVote(BB, VCid, V, EBpk)
<latexit sha1_base64="THO7hd5O2u1+vKr6tAx3txpvPU0=">AAAGoXicdZTbbhMxEIbdQkMJpxYukdCKCqmIqkrKBVxWayqookppS7dF2TRyvLOttUfteFtFUS55AJ4GLuExeAZeAifZgzfdWEo0/8w3Y3uczDD2BcpW6+/K6r37a40H6w+bjx4/efpsY/O5hVGacDjjkR8lF0OG4IsQzqSQPlzECbBg6MP50KPT+PkNJCii8KscxdAP2FUoXMGZVK7Bxrsb2wdXsiSJbu1uEnFAtCIJ27Zp7tgWFY763rEPzNh7O9jYau22Zsu4a7QzY2ufHP/7/urXSXewuXZpOxFPAwgl9xlir92K5Q66LguEP+qPWSIF92HStFOEmHGPXUFPmSELAPvj2fUmxhvlcQw3StQnlMbMq2eMWYA4CoaKDJi8xsXY1FkX66XS/dgfizBOJYR8vpGb+oaMjGmvDEckwKU/UgbjiVBnNfg1SxiXqqNN2wFXNQa9sT0tLeX4wJwMchu9ySRH4nokLhCqFaF1NSxKUWOmchkWL8PK7U6tjnAKSqkSEk4OHX5CgJKayzzYOfhWiWa6PIdW36J15Tun8a2jUTNdB1o09pZUUze6rEvAZQm4JMHDSoKH9Q2ZI+iqZuROk+qtVKpuA6raIcoHphVmIDIKqxgu4yxa7S6t2xKrFC7B6JEG0aM6xDSLa5tm0bJyf+VqZj8rkGlcwDOV858hhCKiRNZfJUBDsB7B4p8U8hJRIjuujpzAlRqakBRY7ii3kdpDzpQW6sBIjylZdEpNVQnT0VgApSuHtAFaUJqvWovShUrqiap1aBS6IgkWS2VuBauJ3F6cv3cNa2+3/X5371iNZoPM1zp5SV6TbdImH8g++UK65Ixw8oP8JL/Jn8ZW47DRbZzM0dWVLOcFqaxG7z/zkmlZ</latexit>

BB BB || h(VCid, V)i
<latexit sha1_base64="7TLjzhLHlXRf0roWqZmoWrLolRg=">AAAGpHicdZTbbhMxEIZdoKGEUwuXSGhFBSpSFCXlAi6rNRWgUKkHsi3qppHjnU2t7EkehypKc8kb8DCIW3gJnoGXwNnsMd1YijT/zDcz9jjrQeQJVK3W37Vbt++s1+5u3Kvff/Dw0ePNrScWhmPJoctDL5RnA4bgiQC6SigPziIJzB94cDoY0Xn89BtIFGHwRU0i6PlsGAhXcKa0q7/ZtE3T9sBVTMrwai4a19d2w/ZYMPRgx7aocBq29dqWsaO/ud1qtuJl3DTaibG9R47+fX/+8/iwv7V+YTshH/sQKO4xxPN2K1INdF3mC2/SmzKpBPdgVrfHCBHjIzaEc20GzAfsTeMTzoyX2uMYbij1L1BG7C1mTJmPOPEHmvSZusTl2NxZFTsfK/ddbyqCaKwg4ItG7tgzVGjMx2U4QgJX3kQbjEuh92rwSyYZV3qoddsB1943cTS156WVmu6bs35q42g2S5GoGokyhBaK0KoaFqVYYOZyFRatwvJ2J1ZHOBmlVQ4JJ4U+vUeAnFrINNjZ/1qKJjrfR6G+RavKd06iK6dAxboKtGg0WlFNn+iiKgFXJeCKhBGWEkZYPZAFgq4eRuo0aXGUWlU1oHocIr9gWmL6IqGwjOEqzqLl6dKqllimcAVGDwoQPahCTDM7tmlmI8v7a1c9+VuBGkcZHKuU/wABZBEtkvlqAQUEqxHMvqSA54gWyXaLyDEM9bsJMsNSR95GFS4yVoVQBybFmJbZpPTDqsAKVX6O3JVChzLkgFiiCr5yLUqXKukrKtehYeAK6S+XStwa1i9ye/n9vWlYu832m+bukX6aDbJYG+QZeUF2SJu8JXvkIzkkXcLJD/KL/CZ/aq9qn2snte4CvbWW5DwlpVW7+A+JQmqe</latexit>

(sCCidi)t
i=1 CreateCC(V, Csk, CM

id, t)
<latexit sha1_base64="qiUT/amq4vxmoStG76wO38CjUNY=">AAAGsXicdZRba9RAFMen1a51vbX6KEiwCC2Usts+6ItQMxaVpdCLTVua7XZ2MmmHXJkzsSwhj34Wv4JfwlfFz+CXcJLNdZsd2OVcfuc/MyfJGYcuB9nr/V1YvHd/qfNg+WH30eMnT5+trD43IIgEZSc0cANxNibAXO6zE8mly85CwYg3dtnp2MFp/vQbE8AD/6uchGzokWuf25wSqUKjlQ/rZqDyaXlsAsbcGvFkYxTz9/3kUpousyURIrg1sVKVDON109g0MTjqb59bm3JjtLLW2+plS7tr9HNjbRcd/vv+6ufRwWh16cy0Ahp5zJfUJQAX/V4oN8G2icfdyTAmQnLqsqRrRsBCQh1yzS6U6ROPwTDOLp1ob1TE0uxAqJ8vtSxar4iJBzDxxor0iLyB2VwabMtdRNJ+N4y5H0aS+XS6kR25mgy0tIOaxQWj0p0og1DB1Vk1ekMEoVL1uWtazDb3dHBiM5WWMt7Tk1Fhg5MkBRK2I2GJ4JoIbtMwMIYak7rzsHAeVm13bAy4VVLKqyBuFdCXj8BYRU3dIjnYO29kc786R03fwG3yg+Pw1qpRmd8GGjh05qipG122FcC8AphT4ECjwIH2hkwRsFUziqCO661UXtsGuN4OjNsQaDDQDhm42dd2pSYFc7D0m67OtN+G6Hp5YV0vz1Dtr0Ld/IViMgpLOPMK/hNL502eUU7eWeWwGgLtCJTfkE8rRDn5cevIEbtWQ5SJEisC1Tay9ggzr5YasEk9p9yyU9k8NAJZ3aMKFdCBCCgDaFC1WFML4xkl9YiaOjjwbS68Wak8rGA1i/uzk/euYWxv9Xe2tg/VUNbQdC2jl+g1Wkd99Bbtos/oAJ0gin6gX+g3+tPZ6Zx3rjrjKbq4kNe8QI3Vcf4DA8Jv0w==</latexit>

If (sCCidi)t
i=1 = ? abort

<latexit sha1_base64="L1QUowhN0fmQYpJop3ZpNaFCUEo=">AAAGnXicdZTdbtMwFMe9wcooXxtcckFEhzQkmNpxATeTppgKpjJUGMuGlq5yHGez8qkcB1RFeQqehlt4Ct4Gp82H06WRKvl/zu/8bZ80x4o8DqLf/7e2fuv2RufO5t3uvfsPHj7a2n5sQJjElJ3S0Avjc4sA83jATgUXHjuPYkZ8y2Nnlovz/NkPFgMPg29iFrGJT64C7nBKhAxNt14fOdrOrhlKJrdITcCY21OevZym/GCQXYoD0wrFjkasMBbTrV5/rz9/tJuLQbHooeIZT7c3zk07pInPAkE9AnAx6EfiFTgO8bk3m6QkFpx6LOuaCbCIUJdcsQu5DIjPYJLOL5hpL2TE1pwwlr9AaPOoWpESH2DmW5L0ibiG5VwebMtdJMJ5N0l5ECWCBXSxkZN4mgi1vFuazWNGhTeTC0JjLs+q0WsSEypkT7umzRxzqIObmrm1EOlQz6blGtwsK5GoHYkqBCsmuM3DwBgUJpersGgVVm93Yoy4XVFS1RC3S+joPTBWUwtZJkfD741soetzKP4GbrMfnUQ/bYWa6zbQwJG7wk3e6LKtAFYVwIoCFxoFLrQ3ZIGAI5tRBnWstlKqtg2w2g6M2xBoMNAOGbjZ13anJgUrMHysnum4DdH16sK6Xp2h3l+GusUfiokkquC5KvkPLJ8rRUaKorNSMAWBdgSqbyigNSJFcVwV+cqu5MBkcYWVgXobobzCuVJSIzZTc1JWnZITVTAjFPU96lAJjeOQMoAGpcSaXhgvOclX1PTBYeDw2F+2KsISlrN4sDx5by6M/b3Bm739L/u9Q62YypvoKXqOdtEAvUWH6CMao1NE0S/0G/1BfzvPOsPOp87nBbq+VtQ8QY2nc/YfnXpkeA==</latexit>

(sCCidi)t
i=1

<latexit sha1_base64="bvLL+GoYb7pa6gYzFAr5gHtMpC0=">AAAGjXicdZTdatRAFMen1a51/ehWL0UJFqGClN2K6IVKyViqLIVta9NKs11mJ5PtkE9yJsoSciU+jLd646v4DL6Ek918TLbZgcD5n/M7Z2ZOkjMOXQ6i2/27snrj5lrr1vrt9p279+5vdDYfGBDEEWWnNHCD6HxMgLncZ6eCC5edhxEj3thlZ2MHZ/GzrywCHvifxTRkQ49MfG5zSoR0jTqPt81AxrP0xASMuTXi6fNRwt/10ksx6mx1d7qzpV03ermxtYeO/v148ud4MNpcOzetgMYe8wV1CcBFrxuKF2DbxOPudJiQSHDqsrRtxsBCQh0yYRfS9InHYJjMLpRqz6TH0uwgko8vtJlXzUiIBzD1xpL0iLiCxVjmbIpdxMJ+M0y4H8aC+XS+kR27mgi0rDuaxSNGhTuVBqERl2fV6BWJCBWyh23TYra5r4OTmFlpIZJ9PR0VNjhpWiBhMxKWCFaK4KYaBsagMJlchoXLsGq7E6PPrZKSqoK4VUCfPgBjFTWXRbC//6UWzXV1DqW+gZvK90/Cb5ZCzXQTaODQWVJN3uiyKQGWJcCSBAdqCQ40N2SOgC2bUTh1rLZSqqYNsNoOjJsQqDHQDBm43tfmSnUKlmD4UD3TYROi6+WFdb08Q7W/dLXzD4qJOCzhmSr4A5bNkjwiRd5ZKZiCQDMC5T/k0wqRIj+uihyziRyQLCqxwlFtI5RXOFNKqM+makzKslNyggpmBKK6R+UqoEEUUAZQoxRfvRbGC5XkK6rXwYFv88hbLJW7JSxncW9x8l43jN2d3sud3SM5lDU0X+voEXqKtlEPvUZ76CMaoFNE0Xf0E/1Cv1sbrVett633c3R1Jc95iGqrdfAfg9Zh0g==</latexit>

(sCCidi)t
i=1

<latexit sha1_base64="bvLL+GoYb7pa6gYzFAr5gHtMpC0=">AAAGjXicdZTdatRAFMen1a51/ehWL0UJFqGClN2K6IVKyViqLIVta9NKs11mJ5PtkE9yJsoSciU+jLd646v4DL6Ek918TLbZgcD5n/M7Z2ZOkjMOXQ6i2/27snrj5lrr1vrt9p279+5vdDYfGBDEEWWnNHCD6HxMgLncZ6eCC5edhxEj3thlZ2MHZ/GzrywCHvifxTRkQ49MfG5zSoR0jTqPt81AxrP0xASMuTXi6fNRwt/10ksx6mx1d7qzpV03ermxtYeO/v148ud4MNpcOzetgMYe8wV1CcBFrxuKF2DbxOPudJiQSHDqsrRtxsBCQh0yYRfS9InHYJjMLpRqz6TH0uwgko8vtJlXzUiIBzD1xpL0iLiCxVjmbIpdxMJ+M0y4H8aC+XS+kR27mgi0rDuaxSNGhTuVBqERl2fV6BWJCBWyh23TYra5r4OTmFlpIZJ9PR0VNjhpWiBhMxKWCFaK4KYaBsagMJlchoXLsGq7E6PPrZKSqoK4VUCfPgBjFTWXRbC//6UWzXV1DqW+gZvK90/Cb5ZCzXQTaODQWVJN3uiyKQGWJcCSBAdqCQ40N2SOgC2bUTh1rLZSqqYNsNoOjJsQqDHQDBm43tfmSnUKlmD4UD3TYROi6+WFdb08Q7W/dLXzD4qJOCzhmSr4A5bNkjwiRd5ZKZiCQDMC5T/k0wqRIj+uihyziRyQLCqxwlFtI5RXOFNKqM+makzKslNyggpmBKK6R+UqoEEUUAZQoxRfvRbGC5XkK6rXwYFv88hbLJW7JSxncW9x8l43jN2d3sud3SM5lDU0X+voEXqKtlEPvUZ76CMaoFNE0Xf0E/1Cv1sbrVett633c3R1Jc95iGqrdfAfg9Zh0g==</latexit>

If (sCCidi)t
i=1 6= (sCCidji

)t
i=1 abort

<latexit sha1_base64="vVddDFhqfg1XTRWBanV3KJO15+Q=">AAAICXiclZVLb9QwEMdTHt2yvFo4cklpkYqEqt2tEHBAqmIqqFaVCqVpUbNdeRNna+I8iB3Kyson4ItwQ9wQV+5cgW+D83bS7IFIm3hmfvMfe7KxJwHBlPV6fxcuXb5ydbGzdK17/cbNW7eXV+7o1I9CEx2aPvHD4wmkiGAPHTLMCDoOQgTdCUFHEwck8aOPKKTY996yWYBGLpx62MYmZMI1XtZ2bXV9w/AFk0hwgwKArTGOH445ft6PT5nhoQ8buZu/lyPrKpz4IRsvr/U2e+mlXhz088Gakl/745XFr4blm5GLPGYSSOlJvxewR9S2oYvJbMRhyLBJUNw1IooCaDpwik7E0IMuoiOerjpWHwiPpdp+KH4eU1OvnMGhS+nMnQjSheyMNmOJsy12EjH76YhjL4gY8syskB0Rlflq0kLVwiEyGZmJATRDLOaqmmcwhCYTja5V+ZRNtds1LGQbOxp1uJHUY4zvaPG4GFMnjgskaEeCEgGSCGjT0AGgEpOY87BgHlaVO9CH2CopYVUQtgpo9wVFqKIyswgOd97VorldzUPS10Gb/PAgOLckKrXbQB0Ezhw1saLTtgQ6L4HOSXBoLcGh7Q3JEGqLZhRODcitFFZbASC3A4A2hNYY2g7poN7XdqU6RedgYE+e014bomnlgjWtnENVv/o7pRUPxvOnJj6XnEUsCkrZ1CpkXqJkr8ojwsjfgTCQhNB2hJZfm2dWiDDyecjIGzQVmzAKS6xwVGWY9LJTSwoN0UyOCbPsqdilGdJ9Vq2jchXQfuibiNIaJfnqWgA0lERj6zrA92wcuk2p3F2qnSHTkcUyuww3RBrZ/19Kb9bS02IpIY6kdAvlZBrCWcyze2/zmRBIAwQxTkKxm3BxW93q1fzTEIn3ztPH6qAem5AIxTy5NyMzRIh/HvPsufpYRMUR128eaBcH+mCzv7U5eD1Y21bzw25JuafcVzaUvvJE2VZeKfvKoWIqX5Rfym/lT+dz51vne+dHhl5ayHPuKrWr8/MfSYXz1w==</latexit>

BCKid
<latexit sha1_base64="yulopR5hmg4gZXz8UDz2xjrpje4=">AAAGk3icdZTLbhMxFIbdQkMJl7ZcVmxGVEgsUJWUBUgsqMatCooqBUqmRU2oHM+Z1sxVczxUYZR3YAtr1rwPS94EZzIXTzqxFMn/Od/5bR9nPI48gbLT+buyeuPmWuvW+u32nbv37m9sbj2wMExiDgMeemF8OmYInghgIIX04DSKgfljD07GLp3lT75BjCIMPslJBCOfXQTCEZxJFbKGJu0J+3xzu7PTyYZxfdLNJ9tvf3//d/jnUdo/31q7GtohT3wIJPcY4lm3E8kX6DjMF95klLJYCu7BtD1MECLGXXYBZ2oaMB9wlGb7nhrPVMQ2nDBWv0AaWVSvSJmPOPHHivSZvMTF3CzYlDtLpPN6lIogSiQEfL6Qk3iGDI1ZEwxbxMClN1ETxmOh9mrwSxYzLlWr2kMbnOGBiW46nFlLmR6Y0/Niju50WiBRMxKVCNVMaJOHRSlqzEwuw6JlWLXcsaVus6SUqiBhF9D7fQSoqLkskr2Dz7Vsrqt9aP4WbbLvHUdXtkZlugm0aOQucVMn+tJUgMsKcEmBi7UCF5sbMkfQUc0ogtmHUZYq1bQA1dtBaROCNQabIYvW+9rsVKdwCUaP9D0dNSGmWR7YNMs9VOurUDv/Q4FMohLOVMEfQgBlRom8s0qAhmAzguU3FPAKUSLfro58hAv1DkJcYkWgWkZqV5gpLdWDiZ5TsuyUeiglWKGszlGFCqgfhxwQa5QWq3tRuuCkrqjuQ8PAEbG/aJWHS7dL4K5uNtcqrZ7q7uLDfH1i7e50X+7sfuhs7xlkPtbJE/KUPCdd8orskXekTwaEk6/kB/lJfrUet960zNb+HF1dyWsektpoHf0HjUdknA==</latexit>

CMid Confirm(VCid, V, VC
id
sk, BCK

id)
<latexit sha1_base64="cnODlBOQyLzWb98d3i7y0804fEk=">AAAG3nicdZTLbtNAFIanhYYSbi0skZBFhVSkqkrKApaVhwpQVKkX6hbVIUzGx+nIV/mMqaIoS9ghdhWPwoItvAPPwEswdnxNHauVzn/Od/6ZOY5nGLoCZafzd2n5xs2V1q3V2+07d+/df7C2/tDAII44nPDADaKzIUNwhQ8nUkgXzsIImDd04XTo0KR++hkiFIH/Xo5D6Hts5AtbcCZVarDWMem+sEwXbMmiKLg0aeDbIvI2TYMKa8s01B9FJwl12hPW88HaRme7kz7a9aCbBRu75PDflyc/jw4G6ytXphXw2ANfcpchnnc7odxC22aecMf9CYuk4C5M22aMEDLusBGcq9BnHmB/kp5xqj1TGUuzg0j9+1JLs9WOCfMQx95QkR6TFzhfS5JNtfNY2q/6E+GHsQSfzxayY1eTgZYMTLNEBFy6YxUwHgm1V41fsIhxqcbaNi2wzT0dnYmZWEs52dOngzxGZzrNkbAZCQuEVkxok4dBKVaYRC7CwkVYudyxoV5nQSlVQsLKoXevEaCkZjIv9vY+1KqZLvdR8Tdok33vOLy0KlSqm0CDhs4CN3Wij00NuKgBFzQ4WGtwsHkgMwRtNYw8mX4ZRatSTQvQ6jgobUKwxmAzZND6XJud6hQuwJJvv9zTfhOi68WBdb3YQ7m+SrWzHxTIOCzgVOX8G/ChqCiRTVYJqCDYjGDxDfm8RJTItltFjmCk7kyICixPlMvIyitMVaXUg3G1pmQxKXWpSjACWZ6jTOXQQRRwQKxRlVzdi9I5J/WK6j7ZVTxvlaULtwvgTtVspovynEnZrW7y7vy9fT0wdra7L7Z3DtWVrpHZs0oek6dkk3TJS7JL3pIDckI4uSK/yG/yp/Wp9bX1rfV9hi4vZT2PSO1p/fgPrGeB7A==</latexit>

VCid, CM
id

<latexit sha1_base64="MILiVbL3Otbcr/FenSDYStC9mPY=">AAAGt3icdZRNb9NAEIa3hYYSvlo4crGIkDhUVVIOwInKSwUoqhQodYviEG3W42TlTzxrUBTlzC+AI/wu7hz5A9zYJP5Yp46lSPvOPPPu7DjeUewLlO32763ta9d3Gjd2bzZv3b5z997e/n0LozThcM4jP0ouRwzBFyGcSyF9uIwTYMHIh4uRRxf5iy+QoIjCD3IawyBg41C4gjOpQn3bosI5sOmpcIZ7rfZhe/kYVxedbNF6+e+b+HvwB3rD/Z0fthPxNIBQcp8h9jvtWB6g67JA+NPBjCVScB/mTTtFiBn32Bj6ahmyAHAwWzY/Nx6riGO4UaJ+oTSWUb1ixgLEaTBSZMDkBNdzi2Bdrp9K9/lgJsI4lRDy1UZu6hsyMhaTMByRAJf+VC0YT4Tq1eATljAu1byatgOufWKiN7MX1lLOTsz5MF+jN5/nSFyPxAVCNRNa52FRihqzkJuweBNWbndmdYVTUEqVkHBy6O0rBCiplcyT3ZOPlWymyz40f4vW2XfP4q+ORi11HWjR2Nvgpk70qa4ANxXghgIPKwUe1g9khaCrhpEHTaqPUqm6Dag+DkrrEKwwWA9ZtDrXeqcqhRuwxQdd9nRah5hmcWDTLHoo91ehZvaHApnGBbxUOf8aQigySmSTVQI0BOsRLL6hkJeIElm7OvIexuoyhKTA8kC5jdRe4VJpqS5M9ZySxaTUbSnBimR5jjKUQ70k4oBYobRY1YvSNSf1iqo+NApdkQTrVlm4cJsA93SzlS7SayZltbrJO+v39tWFdXTYeXp49K7dOjbI6tklD8kj8oR0yDNyTN6QHjknnETkO/lJfjVeNIYNtzFZodtbWc0DUnkan/8DuT50WQ==</latexit>

(sVCCid, SVCCid) ProcessConfirm(BB, VCid, CM
id, Csk, VCCspk)

<latexit sha1_base64="4O7j+EP/rjnrJhDWCZcZc0dXYI8=">AAAHY3icjZXdbtMwFMe9wdbR8bEN7hAoYkLapKpqxwVcTjEToGrStrJsaOkq13G2KJ/KcZiqKJe8Ew/AS/AA3IC4ggfASfPhdKlEpFY+5/zO/9jHiT0JHAt4r/d9afnO3ZXV1tq99vr9Bw8fbWxuaeBHIWWn1Hf88HxCgDmWx065xR12HoSMuBOHnU1snMbPPrMQLN/7yKcBG7nkyrNMixIuXOONyx3dF/E0PdZBw9gyko7kGs5cu7rDTE7C0L/Rj0KfMgDse6YVuju6qnZ0TUAdHR9m/2CnDgyBvTve2O51e9mj3B7088H2Pjr+9eX515Oj8ebKb93waeQyj1OHAFz0ewHvgGkS13Kmo5iE3KIOS9p6BCwg1CZX7EIMPeIyGMVZRxLlpfAYiumH4udxJfPKGTFxAabuRJAu4dcwH0udTbGLiJtvRrHlBRFnHp0VMiNH4b6StlcxrJBR7kzFgNDQEnNV6DUJCeViE9q6wUz9QAU71lNpzuMDNRkXY7CTpECCZiQoESyJ4CaNdAckJjUXYcEirCo31AaWUVLCqiDxeuTQh7fAWEXNzCI4OPhUi+Z2NQ9JX8NN8oNhcGNIVGY3gRoO7AVqYkWXTQmwKAEWJNhQS7ChuSEzBEzRjMKpYrmVwmoqgOV2YNyEQI2BZkjD9b42K9UpWICln3c1p8MmRFXLBatqOYeqfvU6ZRWH48VTS9rtnGU8CkrZzCpk3rH0jMojwsj3QBhMQqAZgfJr82iFCCOfh4ycsCtxFrOwxApHVYZLm51ZUmjApnJMmGVPxWHNmebzah2Vq4DyE7dGSb66FsZzSqKxdZ385J6Xyt2l2jWjtiw2s8vwnMhc9v+WEhdEf/46uD3Q9rr9V929Y3FTKGj2rKGn6AXaQX30Gu2j9+gInSKKvqGf6A/6u/qjtd7aaj2ZoctLec5jVHtaz/4BHja1og==</latexit>

If (sVCCid, SVCCid)) = ? abort process
<latexit sha1_base64="vXbdJugcuprY6zJEuz1vxQOXULY=">AAAHRXicjZVba9RAFMen1a51vbTVR1+CrdBCKbv1QV+EkrFoWQrVtWmlWZfZyaQNuZIzUZaQr+NX8cVXBT9E38RXndwn2wQcWJhzzu/8z8yZzcwscCzgg8GvpeVbt1d6d1bv9u/df/BwbX3jkQZ+FFJ2Sn3HD89nBJhjeeyUW9xh50HIiDtz2NnMxmn87DMLwfK9D3wesIlLLj3LtCjhwjVdPzgyla1t3RdMKhHroGFsGcmu5Brnrp2dV/rM51sKmfkhV4LQpwxgur452BtkQ7k5GRaTTVSMk+nGyrVu+DRymcepQwAuhoOA74JpEtdy5pOYhNyiDkv6egQsINQml+xCTD3iMpjE2Z4T5ZnwGIrph+LncSXzyhkxcQHm7kyQLuFXsBhLnW2xi4ibLyex5QURZx7NC5mRo3BfSRuoGFbIKHfmYkJoaIm1KvSKhIRy0ea+bjBTP1TBjvVUmvP4UE2m5RzsJCmRoB0JKgRLIrhNQxwLSExqdmFBF1aXG2sjy6goYdWQOPwCOnoNjNVUbpbB0eHHRrSw63VI+hpukx+Ngy+GRGV2G6jhwO5QEzv61JYAXQnQkWBDI8GG9obkCJiiGaVTxXIrhdVWAMvtwLgNgQYD7ZCGm31tV2pS0IHhY3lNx22IqlYbVtVqDXX9+u+UVRxPu5eW9PsFy3gUVLKZVcq8YekNVESEUZyBMJiEQDsC1dfm0RoRRrEOGXnPLsVty8IKKx11GS4ddmZJoRGbyzFhVj0V1zFnms/rfdSuEjrJL9MGJfmaWhgvKInGNnWw75lW6C5KFe5K7YpRWxbL7Sq8ILKQ/b+lxAMxXHwObk60/b3h8739d/ubB0rxVKyiJ+gp2kZD9AIdoLfoBJ0iir6i7+gH+tn71rvu/e79ydHlpSLnMWqM3t9/oXiqJg==</latexit>

sVCCid
<latexit sha1_base64="lIE9kZiaLnGC+jVL6TulcdHhdgU=">AAAHF3icjZXLbtNAFIanQEMJt7awY2NRIbFAVVIWsKPyUBUUVSqUukV1iCbjcTvyVT5jIFh+EDaskGDFK7BDbFmy5AF4B8aOL+PUlrAUaf5zvvOfmTOJMw1dDmIw+L104eKl5d7llSv9q9eu37i5urZuQBBHlB3SwA2i4ykB5nKfHQouXHYcRox4U5cdTR2c5Y/esgh44L8Ss5CNPXLqc5tTImRosrpuBjKdVScmGBhzK52sbgw2B/mjnV8Mi8XGk88f/ux+u53sT9aW/5pWQGOP+YK6BOBkOAjFA7Bt4nF3Nk5IJDh1Wdo3Y2AhoQ45ZSdy6ROPwTjJT5Fq92TE0uwgkh9faHlUrUiIBzDzppL0iDiDxVwWbMudxMJ+PE64H8aC+XTeyI5dTQRaNhLN4hGjwp3JBaERl3vV6BmJCBVycH3TYra5o4OTmJm1EMmOnk7KNThpWiJhOxJWCFZMcJuHvABQmEx2YWEXVrc7MEbcqiipakhecwE9fwqM1dRclsnRzutGttD1PhR/A7fZjw7Cd5ZC5boNNHDodLjJE71pK4CuAugocKBR4ED7QOYI2HIYZVDH6iilamuA1XFg3IZAg4F2yMDNubY7NSnowPCeuqe9NkTXqwPrerWHun/9dco7Hky6t5b2+wXLRBxWtrkqbXZZ9q4pMlIUdyAFUxBoR6D6tfm0RqQo9qEiL9mpfH+yqMLKQN1GKJedKyU1YjM1J2U1U/mCFcwIRH2OOlRC+1FAGUCDUmJNL4wXnORgmz448G0eeYtWRbhyO2PUUc3mukovmCxU/28r+QcxXPw7OL8wtjaHDze3Xgw2tjU0f1bQHXQX3UdD9Ahto2doHx0iit6jT+gL+tr72Pve+9H7OUcvLBU1t1Dj6f36B542nBg=</latexit>

sVCCid
<latexit sha1_base64="lIE9kZiaLnGC+jVL6TulcdHhdgU=">AAAHF3icjZXLbtNAFIanQEMJt7awY2NRIbFAVVIWsKPyUBUUVSqUukV1iCbjcTvyVT5jIFh+EDaskGDFK7BDbFmy5AF4B8aOL+PUlrAUaf5zvvOfmTOJMw1dDmIw+L104eKl5d7llSv9q9eu37i5urZuQBBHlB3SwA2i4ykB5nKfHQouXHYcRox4U5cdTR2c5Y/esgh44L8Ss5CNPXLqc5tTImRosrpuBjKdVScmGBhzK52sbgw2B/mjnV8Mi8XGk88f/ux+u53sT9aW/5pWQGOP+YK6BOBkOAjFA7Bt4nF3Nk5IJDh1Wdo3Y2AhoQ45ZSdy6ROPwTjJT5Fq92TE0uwgkh9faHlUrUiIBzDzppL0iDiDxVwWbMudxMJ+PE64H8aC+XTeyI5dTQRaNhLN4hGjwp3JBaERl3vV6BmJCBVycH3TYra5o4OTmJm1EMmOnk7KNThpWiJhOxJWCFZMcJuHvABQmEx2YWEXVrc7MEbcqiipakhecwE9fwqM1dRclsnRzutGttD1PhR/A7fZjw7Cd5ZC5boNNHDodLjJE71pK4CuAugocKBR4ED7QOYI2HIYZVDH6iilamuA1XFg3IZAg4F2yMDNubY7NSnowPCeuqe9NkTXqwPrerWHun/9dco7Hky6t5b2+wXLRBxWtrkqbXZZ9q4pMlIUdyAFUxBoR6D6tfm0RqQo9qEiL9mpfH+yqMLKQN1GKJedKyU1YjM1J2U1U/mCFcwIRH2OOlRC+1FAGUCDUmJNL4wXnORgmz448G0eeYtWRbhyO2PUUc3mukovmCxU/28r+QcxXPw7OL8wtjaHDze3Xgw2tjU0f1bQHXQX3UdD9Ahto2doHx0iit6jT+gL+tr72Pve+9H7OUcvLBU1t1Dj6f36B542nBg=</latexit>

BB BB || h(VCid, sVCCid, SVCCid))i
<latexit sha1_base64="ysWd64ed+q23KjjHfwUbYw6vWqU=">AAAHeXiclZVNb9NAEIa3fDQlfLSFIxIyVEgtqqqkPcCx8lIBiiq1DXWL6hBtNuPU8qd2NlRRmiP/qX+FC1eQ+AlcWDuOvU6dA5Yi7TvzzDvr2djuxb6LstH4sXTn7r37y7WVB/WHjx4/WV1bf2phNBQcTnnkR+K8xxB8N4RT6UofzmMBLOj5cNbzaJI/+wYC3Sj8LEcxdAI2CF3H5UyqUHftxDZN2wdHMiGiq0RsX1/b27bPwoEPm7ZF3f62HSmLpMPYRouqyEQPtaehrS1bpEXdtY3GTiO9jNuLZrbY2CfHf76/uDk56q4vr9r9iA8DCCX3GeJFsxHLbXQcFrj+qDNmQrrch0ndHiLEjHtsABdqGbIAsDNOpzAxXqtI33AioX6hNNKoXjFmAeIo6CkyYPIS53NJsCp3MZTOu87YDeOhhJBPGzlD35CRkYzU6LsCuPRHasG4cNVeDX7JBONSDb5u98GxD0z0xnZiLeX4wJx0Z2v0JpMZElcjcY5QzYRWeaiTQI1J5CIsXoQV7dpWy+3nlFIFpM47gz69R4CCmspZsnXwpZTNdLEPzd+iVfatdnzV16hUV4EWjb0FbuqOvlYV4KICXFDgYanAw+qBTBF01DBmQZPqo1SqqgHVx0FpFYIlBqshi5bnWu1UpnABRg/1PR1WIaaZ37Bp5nso+hd/p7Rju7t4a5N6PWNBDuPcNlUzmw+QvHSyjBLZGSgBGoLVCOZPW8gLRIlsHzpyAgP1/gWRY7NA0UZqh50qLdWCkZ5TMp+pekFLsCJZ3EcRmkFHIuKAWKK0WNmL0jknNdiyD41CxxXBvFUWzt0ugXu62VTn6TmTuer/b2XN97LSZnX1CWnOfzBuL6zdnebezu6x+pYYZHqtkOfkFdkkTfKW7JOP5IicEk5uyE/yi/xe/lt7WdusvZmid5aymmekdNX2/gFR171Q</latexit>

If sVCCid 6= sVCCid complain
<latexit sha1_base64="0it3dcvS9FdsLFckezneLhlCqiw=">AAAHUniclZXLbtNAFIanLSQlFNrCko1Fi4QEqpJ2AcvKQwVVVKlQ6hbVIZqMx+3IV3zGoMjyQ/A0bOEd2PAqrBg7voxdZ4GlSOfynf/MnInHs9DlIIbDPyura3fu9vrr9wb3Nx483NzafmRAEEeUndPADaLLGQHmcp+dCy5cdhlGjHgzl13MHJzlL76yCHjgfxTzkE08cu1zm1MiZGi69eLY1nbNQCKZQmKCgTG3UtNnXwp7V6OBF7qES3pnuDfMH+22MSqMHVQ8p9Pt3qZpBTT2mC+oSwCuRsNQvATbJh5355OERIJTl6UDMwYWEuqQa3YlTZ94DCZJvr1UeyYjlmYHkfz5QsujakVCPIC5N5OkR8QNtHNZsCt3FQv79SThfhgL5tNFIzt2NRFo2aw0i0eMCncuDUIjLteq0RsSESrkRAemxWzzSAcnMTNpIZIjPZ2WNjhpWiJhNxJWCFZEcJeGPAlQmMxdhoXLsLrdmTHmVkVJr4bk2RfQ8RtgrKYWbpkcH31qZAu/Xoeib+Au+fFZ+M1SqNzvAg0cOkvU5I4+dxXAsgJYUuBAo8CB7oEsELDlMMqgjtVRSq+rAVbHgXEXAg0GuiEDN+fardSkYAmGT9Q1nXQhul5tWNerNdT9679T3vFsunxp6WBQsEzEYSWbe6XMW5ZdQEVGOsUZSIcpCHQjUL1tPq0R6RTrUJEP7FperCyqsDJQtxHKYeeekhqzuZqTbjVTefMKZgSi3kcdKqHTKKAMoEEpsaYWxi0lOdimDg58m0deW6oIV2o3jDqq2MKv0i2RVvX/tzLavYy82UB+QkbtD8Ztw9jfGx3s7b/f3znUio/JOnqCnqLnaIReoUP0Dp2ic0TRd/QD/US/er97f/sr/bUFurpS1DxGjae/8Q/E0KsC</latexit>

If v = 0 abort
<latexit sha1_base64="S8pfJxTdnBUDv7rlenJYdVa5ZB4=">AAAIFXiclZXNbtNAEMe3BZoSvlo4cnFpkTigyEmFgANSFVNBFVUqtHWLmjTabMap5fWHdtctluXngCu8BzfElTOPwRuw8bdd54Al2zszv/3PeGzvTjxqcqGqf5aWb9y8tdJavd2+c/fe/Qdr6w917vqMwDFxqctOJ5gDNR04FqagcOoxwPaEwsnE0ubxk0tg3HSdIxF4MLLxzDENk2AhXed7hrJ1+UbdUvDEZWK8tql21PhQrg+66WATpcfBeH3l73DqEt8GRxCKOT/rqp54zg0D2yYNRiFmwiQUovbQ5+BhYuEZnMmhg23gozCuP1KeSs9UMVwmT0cosbc8I8Q254E9kaSNxQWvx+bOptiZL4xXo9B0PF+AQ5JEhk8V4SrzZihTkwERNJADTJgpa1XIBWaYCNmySpbPSant9nAKxnC3z61wOM8nRLjbj8bZmFtRlCFeM+LliFYS0Zo0dE3jJWZuLsK8RViR7lAfmNOcklYBmdMM2nvLAQoqMbPgYPdTJZraRR0lfV1rkh8celfTEhXbTaCuedYCNflE500T+KIJfMEEi1cmWLy5IQnCDdmMzNnXyq2UVlMCrdwOTWtCeIXhzZCuVfvarFSl+AJM2y/XtN+E9Pv5A/f7eQ1F/uJzijMejheXJn+XlAXhe7lsbGUy78CBPCKN9B1IA0oIb0Z4/rc5pECkkdZRRj7CTC6nwHIscxRpROllx1YpNICgHJNm3lO53grQXVE8R+HKoAPmEuC8QpV8VS1NqynJxlZ1NNcxTGbXpVJ3rnYBxCqLJXYeronUZv9/Kr2eSy+SHWFKiw7GVv5xATONoAqUfFG66sodLl6EQzpjOIjC5Kp2XkuZOEBBhJTJ9SiUl41tteKfMZBfThjfNnrV2IT6EIXzaz0SAKXuVRQm940XMio3yW59S7w+0Hud7nan96G3uaOk2+UqeoyeoGeoi16iHfQeHaBjRBBDX9E39L31pfWj9bP1K0GXl9I5j1DlaP3+Bzcc+gA=</latexit>

t
<latexit sha1_base64="kblHulhWdTQXAWSuOSSK8lDEckE=">AAAICHiclZXNbtNAEMfdAk0JXy1w4+JSIXFAkdMKASeqLFVBUaWWtm5RE6KNM04trz+0u6YYyy8AV3gDzogb4spbcOQReAM2/ly7zgFLtndmfvuf2bG9HvvEYlzTfi8sXrp8Zam1fLV97fqNm7dWVm/rzAuoAUeGRzx6MsYMiOXCEbc4gROfAnbGBI7HNprFj98BZZbnHvLQh6GDp65lWgbmwrXPRyvrWkdLDvXioJsN1p9//fBn59vdaG+0uvR3MPGMwAGXGwQzdtrVfP6ImSZ2LBIOI0y5ZRCI24OAgY8NG0/hVAxd7AAbRknJsfpAeCaq6VFxulxNvPKMCDuMhc5YkA7mZ6wemzmbYqcBN58OI8v1Aw6ukSYyA6JyT52tX51YFAxOQjHABrVErapxhik2uOhSJcv7tNR2ezABc7DdY3Y0mOXjPNruxaN8zOw4zhG/GfELBEkiqElDR4hJzMych/nzsDLdgd63JgUlrBKyJjn06gUDKKnUzIP97TeVaGaXdUj6OmqS7x/45xOJSuwmUEe+PUdNrOht0wQ2bwKbM8FmlQk2a25IijBTNCN39pDcSmE1JUByOxBqQliFYc2Qjqp9bVaqUmwOhnblmnabkF6vWHCvV9RQ5i9fpyTjwWh+aeJzyVjggV/IJlYuswMuFBFhZM9AGCAhrBlhxdfmGiUijKwOGXkNU7GDAi2w3FGm4dLDTiwp1IdQjgmz6KnYYjnoHi/XUbpyaI96BjBWoSRfVQuhmpJobFUHea5pUaculbkLtTMwbFkstYtwTaQ2+/9T6fVcepnsEBNSdjCxipcLqGWGVUDyxdmuK35qySYckSnFYRylV63zTMgkAQI8IlTsR5G4rG1qFf+UgnhzouS2tlGNjUkAcTS71iMhEOKdx1F6X3ssouIn2a3/Ei8O9I1Od7Ozsa+tb6lKeiwr95T7ykOlqzxRtpSXyp5ypBgKKJ+Uz8qX1sfW99aP1s8UXVzI5txRKkfr1z9qGPmA</latexit>

Figure 2.2: Overview of the election sub-protocol. Deviations from the protocol descrip-
tion in [3] are highlighted in red (modified parameters), blue (additional
parameters), and yellow (unused parameters).

22

rejected already by ProcessVote. In other words, the voter unnecessarily gets blocked by
a previously submitted invalid vote.

In the following subsections, we will have a closer look at the algorithms executed during
the election phase. The two checklists of Tables 2.3 and 2.4 are the results of our analysis.
The first refers to the algorithms executed by VD and the second to the algorithms exe-
cuted by BBM. They describe to the points that we consider crucial when implementing
these algorithms (in addition to the general points listed in Table 2.1). Note that all VD
algorithms are implemented using web-client technologies.

Nr. Algorithm Description of Check

V1 GetID The key derivation function δ is implemented properly using the
same current standard as in Register and the same salt IDseed.

V2 GetKey The key derivation function δ is implemented properly using the
same current standard as in Register and the same salt KEYseed.

V3 GetKey The decryption of VCksid using the symmetric key KSpwdid is
implemented properly using the same current standard as in
Register.

V4 Confirm The computation of the confirmation message CMid is imple-
mented according to the protocol. It corresponds (partially) to
the computation of VCCid in Register.

V5 CreateVote The ElGamal encryption c is implemented properly using a fresh
randomization r.

V6 CreateVote The computation of the partial choice codes pCCidi is implemented
according to the protocol.

V7 CreateVote The modified encrypted vote c̃ is derived from c according to the
protocol.

V8 CreateVote The non-interactive zero-knowledge proofs πsch, πexp, and πpleq
are generated according to the protocol (see Table 2.5).

V9 CreateVote All non-interactive zero-knowledge proofs are implemented prop-
erly. In particular, the Fiat-Shamir heuristic is applied to all
public values and commitments. Each proof is generated using a
fresh randomization s P Zq.

Table 2.3: List of checks relative to the client-side algorithms of the election phase, which
are executed by VD.

23

Nr. Algorithm Description of Check

B1 ProcessVote Checking the existence of a previously submitted ballot with
the same VCid in BB is conducted properly.

B2 ProcessVote Checking the existence of an entry for VCid in ID is conducted
properly. The public key from that entry must correspond to
the submitted value VCidpk.

B3 ProcessVote The verification of the non-interactive zero-knowledge proofs
πsch, πexp, and πpleq is implemented properly. In each case,
the Fiat-Shamir heuristic is applied to all public values and
commitments listed in Table 2.5.

B4 CreateCC The number of submitted partial choice codes is equal to t.

B5 CreateCC The long choice codes (or the decrypted short choice codes)
are tested for uniqueness.

B6 CreateCC
ProcessConfirm

The keyed pseudo-random function fk is implemented prop-
erly, for example as HMAC based on SHA256.

B7 CreateCC
ProcessConfirm

The symmetric decryption using the symmetric key VCCid is
implemented properly using the same current standard as in
Register.

B8 ProcessConfirm The verification of the signature SVCCid is implemented prop-
erly according to the RSA-PSS standard.

Table 2.4: List of checks relative to the server-side algorithms of the election phase, which
are executed by BBM.

2.3.1 Algorithms GetID, GetKey, Confirm, CreateVote

These are the client-side algorithms, which are executed by VD using web-client tech-
nologies (JavaScript). GetID, GetKey, and Confirm are relatively simple and their im-
plementation must be in accordance with corresponding computations in the algorithm
Register from the pre-election phase. Some of the checks from Table 2.2 must therefore be
repeated almost one-to-one for the client-side implementation. Even tiny deviations from
the client-side implementation could disrupt the proper functioning of the vote casting
process.

The most complex client-side algorithm is CreateVote, which prepares the ballot based
on the voter’s choices. Its output V consists of the following elements:

• The ElGamal encryption c “ pc1, c2q “ Encpv, EBpkq of the aggregated vote
śt
i“1 vji

using the encryption randomness r P Zq;

• The set tpCCidi u
t
i“1 of partial choice codes pCCidi “ v

VCidsk
ji

;

24

• The modified encrypted vote c̃ “ pc̃1, c̃2q “ pc
VCidsk
1 , c

VCidsk
2 q;

• The voter’s public key VCidpk;

• Three zero-knowledge proofs πsch, πexp, and πpleq.7

Each of these values must be computed exactly according to the protocol. Most compu-
tations are conducted in Gq (modulo p). In the implementation of the non-interactive
zero-knowledge proofs, it is very important to apply the Fiat-Shamir heuristic to all
commitments created in the initial step of the proof generation and to the right amount
of public inputs. Otherwise, various attacks exist to weaken the security provided by
the proofs [10, 14]. Table 2.5 gives an overview of the secret inputs, public inputs, and
commitments for each proof included in V. It corresponds exactly to the definition of the
proofs in r3s.8 Note that all public inputs and commitments are elements of Gq and all
secret inputs are elements of Zq, i.e., computations are conducted modulo p respectively
modulo q.

Proof Type Secret Inputs Public Inputs Commitments

πsch Exp r g, c1 (and c2) gs, for s $
Ð Zq

πexp Eq VCidsk g, c1, c2, VC
id
pk, c̃1, c̃2 gs, cs1, c

s
2, for s

$
Ð Zq

πpleq Eq r ¨ VCidsk g, EBpk, c̃1,
c̃2

śt
i“1 pCC

id
i

gs, EBspk, for s
$
Ð Zq

Table 2.5: Overview of the non-interactive zero-knowledge proofs contained in each sub-
mitted ballot. Note that c2 is an auxiliary public input of πsch, which ties the
the right-hand side of the ElGamal encryption to the proof.

2.3.2 Algorithms ProcessVote, CreateCC, ProcessConfirm

These are the server-side algorithms of the election phase, which are executed by BBM in
response to each submitted ballot and confirmation. All three algorithms include certain
validity tests, which may lead to an exception if one of them fails. Exceptions are handled
by returning either 0 or the special symbol K. In each of these cases, the vote casting
process is stopped. If ProcessVote returns 0, the submitted ballot V is discarded, which
means the voter will be able to repeat the vote casting process from the beginning. If

7We observed that πsch, which proves knowledge of the encryption randomness r P Zq, is redundant
in the light of πexp and πpleq, because r “ logg c1 “ logg c̃1{ logc1 c̃1 can be computed easily from r ¨VCidsk “
logg c̃1 and VCidsk “ logc1 c̃1. A proof of knowledge of r ¨ VCidsk is included in πpleq and a proof of knowledge
of VCidsk is included in πexp, i.e., together they imply knowledge of r. Note that the auxiliary public input
c2 of πsch is also included in πexp.

8From Version 1.0 to Version 5.0 of the specification document [5], the application of the Fiat-Shamir
heuristic was not specified in further detail. According to [6], the code implementing the heuristic did
not apply the heuristic properly to all public inputs and commitments, but the problem has been solved
in a recent patch. Accordingly, the latest versions of [5] contain a more detailed and correct description
of the Fiat-Shamir heuristic.

25

CreateCC returns K, V has already been added to BB, which means that the voter will
be blocked from submitting another vote (see remark on Page 21). If ProcessConfirm
returns K, the confirmation message CMid is discarded, i.e., the voter may attempt to
submit another confirmation message that possibly will pass the tests.

The purpose of the algorithm ProcessVote is threefold. It first checks if the public key
VCidpk included in V is consistent with the entry for VCid in ID.9 If this is the case, it checks
if an entry for VCid already exists in BB. If that’s not the case, all three non-interactive
zero-knowledge proofs are verified. Again, the proper application of the Fiat-Shamir
heuristic is a precondition for the correctness of the proof verification.

Algorithm CreateCC first derives the long choice codes CCidi by applying the keyed pseudo-
random function fk to the partial choice codes pCCidi included in the ballot (using Csk
as symmetric key). If an entry exists in the voter’s codes mapping table CMid for every
HpCCidi q, the set of short choice codes tsCCidi u

t
i“1 can be retrieved by decrypting the

linked ciphertexts. The existence of such entries proves that all selected voting options
vi are valid. In the implementation of this algorithms, the critical points are similar
to the ones already mentioned relative to the algorithm Register, which generates the
mapping tables. In addition to those points, it is crucial to verify that the long (or
the short) choice codes are unique (otherwise the same voting options could be selected
multiple times) and that the number of submitted partial choice codes corresponds to t
(otherwise ballots containing an amount of votes different from t would be accepted and
added to BB). Surprisingly, these important aspects are not discussed in [3].10

Algorithm ProcessConfirm is very similar to CreateCC, but it only deals with a single
value, the confirmation message CMid. In addition to applying the keyed pseudo-random
function fk to CMid, selecting the entry for HpVCCidq from the mapping table CMid, and
decrypting the short vote cast code sVCCid, the attached RSA signature of sVCCid is
verified. This is an additional test which could possibly lead to an exception.

2.4 Post-Election Phase

In the post-election phase, the collected election data from BB is given to EA, which is in
charge of performing the decryption and the tallying. Their main output is the election
result r, which can be seen as the list of plaintext votes from each voter. In addition to
r, EA generates some cryptographic evidence Π, which can be used by AUD to verify
that the decryption and the tallying has to be conducted properly. As one can see in the
protocol diagram of Figure 2.3, there is a single algorithm for each of these tasks.

9Instead of returning VCidpk to BBM along with the encrypted vote, it would be easier to let the BBM
retrieve VCidpk from the list ID based on VCid. Without a consistency test for VCidpk, there would be less
exceptional cases in the protocol flow.

10Invalid votes of that kind would be sorted out at tallying, when the vector of decrypted votes is
checked against Ω. However, eliminating them as early as possible in the process is certainly preferable.
Then affected voters may even be allowed for re-submitting another (possibly valid) ballot.

26

Bulletin Board
Manager

<latexit sha1_base64="1gIprjb5pYO9Lfl2AUyXRV/DTvE=">AAACIXicbVDLThtBEJwlgRCeJhxzGcVB4gDWrjmEI4JLLpFAirEl78rqHffaI8/MrmZ6EdbKv8EP8BtcQcot4gb8TMbGBx4paaRSVbdqutJCSUdh+BAsfPi4uPRp+fPK6tr6xmZt68u5y0srsCVyldtOCg6VNNgiSQo7hUXQqcJ2OjqZ+u0LtE7m5jeNC0w0DIzMpADyUq8WxgINoZVmEBNeUppVx6VSSNLw4xxsP467+5HWyS8wMEA76dXqYSOcgb8n0ZzU2Rynvdpj3M9FqX2MUOBcNwoL2nNZBlqqcVKBJSkUTlbi0mEBYuRjup4a0OiSanbihO94pc+z3PpniM/UlxsVaOfGOvWTGmjo3npT8X9et6TsMKmkKUpCI56DslJxyvm0L96XFgWpsScgrPR/5WIIFoQvzfkyorenvyfnzUZ00GieNetH3+e1LLOv7BvbZRH7wY7YT3bKWkywK3bDbtldcB38Cf4G98+jC8F8Z5u9QvD0D8xZpMI=</latexit>

Election Authorities
<latexit sha1_base64="4XgxN5jQi4i6j4qUZySon9T218k=">AAAH5HiclZVLb9NAEMe3BZoSXi0cEZJLQeKAIqcVAk6ULBGgqFKh1C1q0mizGSeW1w9517SR5RNXbogDHLj3hASfhm/D2o6fdQ6sFHtn5jf/2R3H65HLDC5U9e/S8qXLV1Yaq1eb167fuHlrbf22xh3fo3BAHeZ4RyPCgRk2HAhDMDhyPSDWiMHhyMRR/PATeNxw7A9i5sLAIhPb0A1KhHQN1+71BZyJkR50GdDIpbz0xdTxDGEAD4drm2pLjYdycdKeTzZfnH+Pxo+94frKr/7Yob4FtqCMcH7cVl3xmOs6sQw2GwTEEwZlEDb7PgeXUJNM4FhObWIBHwTxhkLlofSMFd3x5M8WSuwtZgTE4nxmjSRpETHl1VjkrIsd+0J/NggM2/UF2DQppPtMEY4SdUcZG55sA5vJCaFRE6hCp8QjVMgelqqcJUttNvtj0PvdDjeDflRPiKDbCYfpnJthmCJuPeJmCC6I4DoNDWNeYCJzEeYuwvJy+1rPGGeUtHLIGKfQ21ccIKcSMw32uh9L0bmdr6Ogr+E6+d6+ezouULFdB2rYNReoyR2d1CXwRQl8QYLJSwkmr29IgnBdNiN1dnCxldKqK4CL7cC4DuElhtdDGi73tV6pTPEFGN4trmm3Dul0sg13Otka8vr53ymuuD9cvDT5usxZEL6bycZWKvMabMgi0pg/A2lAAeH1CM/eNpvmiDTm6ygi72Eiz1fwMix15GVE4WHHViHUg1kxJs2sp/IAFqA5It9H7kqhPc+hwHmJKvjKWhhXlGRjyzrYsXXDs6pSc3emNgVqFsUSOwtXRCrZ/19Kq9bS4mIxIT9Y8REasIlHZmGQXNXWcykQBxiIgHnyNAnkZWNbLfknHsjnHsS3ja1ybMR8CIPoWo3MgDHnNAyS+8YTGZWfuHb1g3Zxom212tutrXfq5s4DlIxVdBfdR49QGz1FO+gN2kMHiKLP6Bz9Rn8aeuNL42vjW4IuL81z7qDSaPz8B8WV6s0=</latexit>

Auditors
<latexit sha1_base64="Sav63908XMGhWr7d8vjwm2hu+uk=">AAAH2HiclZVLb9NAEMe3BZoSXi0cubgUJA6ocloh4ETJUgGKKhVK3UITos16nFpeP7S7po0sS9wQV24gcQVx4vPwbdjY8bPOgZVi78z85j+743g9CpgtpK7/XVi8cPHSUmv5cvvK1WvXb6ys3jSEH3IKB9RnPj8aEQHM9uBA2pLBUcCBuCMGhyMHT+OHH4EL2/feykkAA5eMPduyKZHKNVxZ7Us4kyMrehaatvS5iIcr6/qGngzt/KQzm6w//f1tOr7vDVeX/vRNn4YueJIyIsRxRw/kA2FZxLXZZBARLm3KIG73QwEBoQ4Zw7GaesQFMYiSTcTaPeUxNcvn6udJLfGWMyLiCjFxR4p0iTwR9djU2RQ7DqX1eBDZXhBK8GhayAqZJn1t2hHNtDlQySZqQii31Vo1ekI4oVL1rVLlLF1qu903wervdIUT9af1pIx2uvEwmwsnjjMkaEaCHMElEdykYWAsSszUnIcF87Ci3L7Rs82cUlYB2WYGvXouAAoqNbNgb+ddJTqzi3WU9A3cJN/bD07NEpXYTaCBA2eOmtrRh6YEMS9BzElwRCXBEc0NSRFhqWZkzi4ut1JZTQVwuR0YNyGiwohmyMDVvjYrVSkxB8O75TXtNiHdbr7hbjdfQ1G/+DslFfeH85emXpcZCzIMctnEymRegAd5RBmzZ6AMKCGiGRH52+bRAlHGbB1l5A2M1ZkKPMcyR1FGlh52YpVCPZiUY8rMe6oOXQmGL4t9FK4M2uM+BSEqVMlX1cK4pqQaW9XBvmfZ3K1Lzdy52glQpyyW2nm4JlLL/v9SRr2WkRRLCPWRSo7QiI05mcRRetU3niiBJMBARoyr0yRSl7UtveIfc1DPPUpua5vV2IiFEEfTaz0yAcb80zhK72sPVVR94jr1D9r5ibG50dna2Hytr2/fRelYRrfRHXQfddAjtI1eoj10gCg6RT/QT/Sr9b71qfW59SVFFxdmObdQZbS+/gNiXOW8</latexit>

BB
<latexit sha1_base64="p83yrZQUOHwnUssLP+D1w8LGfNk=">AAAHyHiclZVLb9NAEMe3PJoSXi1w4+JSIXFAUdIKAScqL1WBqFIh1C1qQrTZjFPL64d21xRj+cKdK3wBzvB5OPJN2Njxs84BS7F3Zn7zn/E4Xk98ZgnZ7f5ZuXT5ytXV1tq19vUbN2/dXt+4Ywgv4BSOqMc8fjIhApjlwpG0JIMTnwNxJgyOJzaex48/AReW576XoQ8jh8xcy7Qokco1GOr6eH2r2+kmh3Zx0Vsstl78/PJ3/9e96HC8sfp7OPVo4IArKSNCnPa6vnwsTJM4FgtHEeHSogzi9jAQ4BNqkxmcqqVLHBCjKGk61h4qz1QzPa5+rtQSbzkjIo4QoTNRpEPkmajH5s6m2GkgzWejyHL9QIJL00JmwDTpafMJaFOLA5UsVAtCuaV61egZ4YRKNadKlc9pq+32cArmcE8XdjSc15My2tPjcbYWdhxniN+M+DmCSyK4ScPAWJSYubkM85dhRbmB0bemOaWsArKmGfT6pQAoqNTMgv29D5Xowi76KOkbuEm+P/DPpyUqsZtAA/v2EjV1Rx+bEsSyBLEkwRaVBFs0DyRFhKmGkTl1XB6lspoK4PI4MG5CRIURzZCBq3NtVqpSYgmGD8o9HTQhup7fsK7nPRT1i79TUnEwXt6ael0WLMjAz2UTK5PZBxfyiDIWz0AZUEJEMyLyt82lBaKMRR9l5B3M1B4KPMcyR1FGlh52YpVCfQjLMWXmM1WbrATDk8V9FK4MOuQeBSEqVMlX1cK4pqQGW9XBnmta3KlLLdy52hlQuyyW2nm4JlLL/v9SRr2WkRRLCPVRSrbQiM04CeMoPXc7z5VAEmAgI8bVbhKp0+ZOt+KfcVDPPUoum9vV2IQFEEfzcz0SAmPeeRyl180nKqo+cb36B+3iwtju9HY62297W7saSo81dB89QI9QDz1Fu+gVOkRHiKIZ+oa+ox+tNy2/dd4KU/TSyiLnLqocra//ANLv3fM=</latexit>

(r,⇧) Tally(BB, EBsk, EBpk, VCCspk,⌦, (v1, . . . , vk))
<latexit sha1_base64="P6YhrByMLQQxnZRpldM+AnvgkJo=">AAAIUniclZVLb9NAEMe3FNoQCrRwREIuFVIqRVXSCgG3yqaCKqpIX25RHaKNPU4trx/a3bRYlo98Hq58EDhwgQ/AiSsnNn47dQ5Y8npn5rf/2R3buyOfWIx3Oj8Wbi3evrO03LjbvLdy/8HD1bVHKvMmVIdT3SMePR9hBsRy4ZRbnMC5TwE7IwJnI1uZxs+ugDLLc0944MPAwWPXMi0dc+Earu63aFvrW5saAZNjSr1r7QQTErQ0WW5rezKzp60vWlVRmHhK2nsHxrjduhp22xoxPM7aV0N7c3O4utHZ6sSXdLPTTTsbu+jw9+enX4/6w7WlP5rh6RMHXK4TzNhFt+PzNjNN7FgkGISYcksnEDW1CQMf6zYew4XoutgBNgjjxUfSc+ExJNOj4na5FHvLI0LsMBY4I0E6mF+y2djUWRe7mHDz1SC0XH/CwdWTROaESNyTppWUDIuCzkkgOlinlpirpF9iinUu6l3J8imZarOpGWDGRQ21aT7Owz05GmZ9ZkdRhvj1iJ8jSklEqdOYvq8SMzXnYf48rEh3rPYsI6eEVUCWkUH7bxhAQSVmFuztfahEU7uYR0lfVerke8f+tVGiYrsOVBXfnqMmVvSxbgCbN4DNGWCzygCb1RckQZgpipE5ZaVcSmHVJVDK5VCUOoRVGFYPqUq1rvVKVYrNwZSD8pwO6hBZzhcsy/kcivzF5xRnPB7On5r4XVIW+MTPZWMrk3kLLuQRYaTvQBhQQlg9wvK/zdULRBjpPMrIEYzFXgw0xzJHkYaXXnZslUI9CMoxYeY1FZs1B9XjxToKVwb1qacDYxWq5KtqKcqMkihsVUfxXNOizqxU6s7VLkG3y2KJnYdnRGZG/38qdTaXWiSLj6Q8Glv5xwXUMoMqUPJF6a4rjsd4Ew7JmOIgCpO2s/VayMQBAjwkVOxHoWjWdzoV/5iC+HLC+LG+XY2NyASicNrORgIgxLuOwuS5/kJExSHZnT0Sb3bU7a3uztb2oTgtJZRcDfQEPUMt1EUv0S56h/roFOnoC/qOfqJfy9+W/zYWGosJemshHfMYVa7Gyj9c3REG</latexit>

r,⇧
<latexit sha1_base64="LqOrYScaFYFjuexjxsyBITGJTHk=">AAAIDHiclZVLb9NAEMfdAk0prxaOXFwqJA5V5LRCwIkqpgIUVQq0cYuaEG2ccbry+qHdNcWyfOYGV/ge3BBXvgN3jlw4cmPj59p1DliKszPzm/+Mx/Z64hPMuKb9XFq+dPnKSmv16tq16zdu3lrfuG0wL6AmDEyPePRkghgQ7MKAY07gxKeAnAmB44mtz+PH74Ay7LlHPPRh5KCZiy1sIi5cA7o97OPx+pbW1pJDvbjoZIutp38/4N/bv6A/3lj5M5x6ZuCAy02CGDvtaD7fZpaFHEzCUYQoxyaBeG0YMPCRaaMZnIqlixxgoyhpO1bvC89UtTwqfi5XE6+cESGHsdCZCNJB/IzVY3NnU+w04NbjUYRdP+DgmmkhKyAq99T5DNQppmByEooFMikWvarmGaLI5GJSlSrv01bX1oZTsIb7XWZHw3k9zqP9bjzO18yO4xzxmxG/QHRJRG/SMHSdSczcXIT5i7Cy3KHRw9OCElYJ4WkOvXzGAEoqNfNgb/9NJZrZZR+SvqE3yfcO/fOpRCV2E2jovr1ATVzR26YEtiiBLUiwWSXBZs0DSRFmiWHkzq4uj1JYTQV0eRy63oSwCsOaIUOvzrVZqUqxBZh+IPd00IR0u8UFd7tFD2X98nFKKh6OF7cmXpeMBR74hWxi5TLPwYUiIozsHggDJIQ1I6x421yzRISR9SEjr2EmdlGgBZY7yjJcutmJJYV6EMoxYRYzFdssB8Pj5XWUrhzqU88ExiqU5Ktq6XpNSQy2qqN7roWpU5fK3IXaGZi2LJbaRbgmUsv+/1JGvZZRFjtChJQTTKzi4QKKrbAKSL4423XFhy3ZhCMyoyiMo/SstZ8ImSRAgEeEiv0oEqfNXa3in1EQT06U/G3uVGMTEkAczc/1SAiEeOdxlP5vPhRR8ZHs1D+JFxfGTruz2955pW3tqUp6rCp3lXvKA6WjPFL2lBdKXxkopoKVT8pn5UvrY+tr61vre4ouL2U5d5TK0frxD23h+64=</latexit>

BB, r,⇧, EBpk, VCCspk,⌦
<latexit sha1_base64="jc1SNLpM83cPyhV1YgazFu5+0xs=">AAAIJ3iclZVLb9NAEMddHk0JrxaOSMilQuIQRU4rBJyobCpAUUWgrVvUhGizGacrrx/a3VAiyzckPgtc4XtwQ3BE4siFIzfWbzt1DliyvTPzm//sju31yKeEC037sXTu/IWLy42VS83LV65eu766dsPk3pRhOMAe9djRCHGgxIUDQQSFI58BckYUDke2EcUP3wLjxHP3xcyHgYMmLrEIRkK6hqu3+7reYq1+j7T6O7pvt/qmYfDo/sKBCRqubmhtLT7Us4NOOth4/PcD+d36Bb3h2vKf/tjDUwdcgSni/Lij+aLFLQs5hM4GAWKCYAphsz/l4CNsowkcy6GLHOCDIF5RqN6VnrFqeUyerlBjbzkjQA7nM2ckSQeJEz4fi5x1seOpsB4OAuL6UwEuTgpZU6oKT43ao44JAyzoTA4QZkTOVcUniCEsZBMrVd4lU202+2OwZO+4HfSjekIEO3o4zMbcDsMM8esRP0eMkohRpxE9nBITmYswfxFWlNszu2ScU9IqIDLOoOdPOEBBJWYW7O68rkRTu5hHSd806uS7e/7puETFdh1oGr69QE2u6E1dAl+UwBck2LySYPP6hiQIt2QzMqdulFsprboCRrkdhlGH8ArD6yHTqPa1XqlK8QWYsVue024douv5gnU9n0NRv3id4op7w8VTk59LyoKY+rlsbGUyT8GFPCKN9BlIA0oIr0d4/rW5uECkkc6jjLyCidxggeVY5ijKiNLDjq1SqAuzckyaeU/lDizA9ESxjsKVQT3mYeC8QpV8VS3DmFOSja3qGJ5rEebMS6XuXO0EsF0WS+w8PCcyl/3/pcz5WmZRbB9RWnQwtvKXCxixZlWg5AvTXVf+8+JNOKAThmZhkFy19iMpEwcoiIAyuR8F8rK+pVX8EwbyzQni2/pmNTaiUwiD6DofmQGl3mkYJPf1+zIqf5Kd+V/i2YG52e5stTdfahvbqpIcK8ot5Y5yT+koD5Rt5ZnSUw4UrLxXPimflS+Nj42vjW+N7wl6binNualUjsbPf0HsBQE=</latexit>

v VerifyTally(BB, r,⇧, EBpk, VCCspk,⌦)
<latexit sha1_base64="Hz80QeVqpPIUTnLtrns7Yz3O/vQ=">AAAIQHiclZVLb9NAEMe3PJoSXi0ckZBLhVSkKEpaocKtsqkARRXpyy2qQ7Rxxqnl9UO7mxbL8pGPwffgDFf4AHwDJA6oV06sH/GrzgFLsXdmfvOf3bGzO/KIyXin83Ph2vUbNxcbS7eat+/cvXd/eeWBytwp1eFId4lLT0aYATEdOOImJ3DiUcD2iMDxyFKi+PE5UGa6ziH3PRjYeOKYhqljLlzD5a1zjYDBMaXuhaYCNQ3/EBPir2uy3KItrW+2tB3Zs1qaqigser6zYYKfDZfXOu1OfElXB910sLaN9n5/evxlvz9cWbzUxq4+tcHhOsGMnXY7Hm8xw8C2SfxBgCk3dQJhU5sy8LBu4QmciqGDbWCDIF5qKD0VnrFkuFT8HC7F3mJGgG3GfHskSBvzM1aNRc662OmUGy8Ggel4Uw6OnhQypkTirhT1TRqbFHROfDHAOjXFXCX9DFOsc9HdUpWPyVSbTW0MhmgeswItqsd5sCOHw9mYWWE4Q7x6xMsQpSCi1GlEb6fAROY8zJuH5eUO1J45zihh5ZA5nkFvXzGAnErMWbC3874UTe18HgV9VamT7x14F+MCFdt1oKp41hw1saIPdQlsXgKbk2CxUoLF6huSIMwQzZg5ZaXYSmHVFVCK7VCUOoSVGFYPqUq5r/VKZYrNwZTd4px26xBZzhYsy9kc8vr55xRXPBjOn5r4u6Qs8KmXycbWTOY1OJBFhJG+A2FAAWH1CMv+bY6eI8JI51FE9mEidl6gGTZz5GV44WXHViHUA78YE2bWU7E1c1Bdnq8jd82gPnV1YKxEFXxlLUWpKInGlnUU1zFMalelUnemdga6VRRL7CxcEalk/38ptVpLzYvFB1AWja3s48pPqAwo+MJ01xWHYbwJB2RCsR8Gyb3Tfilk4gABHhAq9qNA3FY3OyX/hIL4coL4sbpRjo3IFMIgulcjPhDiXoRB8lx9LqLikOxWj8SrA3Wj3d1sb+yJ01JCybWEHqEnaB110RbaRm9QHx0hHX1G39B39KPxtfGr8adxmaDXFtKch6h0Nf7+A915Dms=</latexit>

If v = 0 abort
<latexit sha1_base64="S8pfJxTdnBUDv7rlenJYdVa5ZB4=">AAAIFXiclZXNbtNAEMe3BZoSvlo4cnFpkTigyEmFgANSFVNBFVUqtHWLmjTabMap5fWHdtctluXngCu8BzfElTOPwRuw8bdd54Al2zszv/3PeGzvTjxqcqGqf5aWb9y8tdJavd2+c/fe/Qdr6w917vqMwDFxqctOJ5gDNR04FqagcOoxwPaEwsnE0ubxk0tg3HSdIxF4MLLxzDENk2AhXed7hrJ1+UbdUvDEZWK8tql21PhQrg+66WATpcfBeH3l73DqEt8GRxCKOT/rqp54zg0D2yYNRiFmwiQUovbQ5+BhYuEZnMmhg23gozCuP1KeSs9UMVwmT0cosbc8I8Q254E9kaSNxQWvx+bOptiZL4xXo9B0PF+AQ5JEhk8V4SrzZihTkwERNJADTJgpa1XIBWaYCNmySpbPSant9nAKxnC3z61wOM8nRLjbj8bZmFtRlCFeM+LliFYS0Zo0dE3jJWZuLsK8RViR7lAfmNOcklYBmdMM2nvLAQoqMbPgYPdTJZraRR0lfV1rkh8celfTEhXbTaCuedYCNflE500T+KIJfMEEi1cmWLy5IQnCDdmMzNnXyq2UVlMCrdwOTWtCeIXhzZCuVfvarFSl+AJM2y/XtN+E9Pv5A/f7eQ1F/uJzijMejheXJn+XlAXhe7lsbGUy78CBPCKN9B1IA0oIb0Z4/rc5pECkkdZRRj7CTC6nwHIscxRpROllx1YpNICgHJNm3lO53grQXVE8R+HKoAPmEuC8QpV8VS1NqynJxlZ1NNcxTGbXpVJ3rnYBxCqLJXYeronUZv9/Kr2eSy+SHWFKiw7GVv5xATONoAqUfFG66sodLl6EQzpjOIjC5Kp2XkuZOEBBhJTJ9SiUl41tteKfMZBfThjfNnrV2IT6EIXzaz0SAKXuVRQm940XMio3yW59S7w+0Hud7nan96G3uaOk2+UqeoyeoGeoi16iHfQeHaBjRBBDX9E39L31pfWj9bP1K0GXl9I5j1DlaP3+Bzcc+gA=</latexit>

Figure 2.3: Overview of the post-election sub-protocol. Deviations from the protocol
description in [3] are highlighted in blue (additional parameters).

Despite the simplicity of this last protocol phase, we still found some inconsistencies in
its description in [3]:

• EBpk, VCCspk, and Ω are additional algorithm parameters of both Tally and VerifyTally.

• pv1, . . . , vkq is an additional algorithm parameter of Tally, otherwise a general fac-
toring algorithm cannot be implemented efficiently.

• While Tally performs consistency checks tvi,1, . . . , vi,tu P Ω for each decrypted vote
vi “

śt
j“1 vij , VerifyTally does not include such tests. This is an obvious mistake.

To perform these test, VerifyTally requires Ω.

• In the course of conducting Tally, EA verifies signatures SVCCid using their own
public key VCCspk, i.e., they verify their own signatures. By doing so, they get
convinced that the decrypted short vote cast codes sVCCid correspond to the val-
ues they generated previously during the pre-election phase. The same could be
achieved more easily, for example by keeping a list of all generated short vote cast
codes (or a list of corresponding hash values).

• According to [3], Tally calls ProcessVote for every vote in BB. The obvious goal
of this task is to repeat the ballot consistency checks. However, because BB has a
completely different state when Tally is invoked by EA compared to the state when
ProcessVote was invoked during vote casting, this does not work as suggested. We
assume therefore that Tally mainly checks that BB contains at most one ballot for
each VCid and that their zero-knowledge proofs are all valid.

While conducting VerifyTally by AUD is part of the AVP as specified in [3], it is—to
the best of our knowledge—not part of the implemented and deployed system. We will
therefore ignore VerifyTally in our analysis.

27

The purpose of the Tally algorithm is threefold. First, it performs a cleansing process over
all submitted ballots by performing tests similar to those of the ProcessVote algorithm
to each submitted ballot (see remark above). The list C of encrypted votes is then
extracted from the cleansed ballot list. Second, by calling the algorithm C1 Ð MixpCq,
the encrypted votes are re-encrypted and shuffled into a new list C1. The permutation
according to which the shuffling is performed is picked uniformly at random from all n!
possible permutations (where n denotes the size of C and C1). Finally, the votes in C1 are
decrypted using the private key EBsk into values vi, which are then factorized into sets
Vi “ tvi,1, . . . , vt1u of prime factors vij . For each resulting factorized vote, a test Vi P Ω
is performed to detect invalid combinations of voting options. Independently of how Ω is
represented for a given election, this test must consist of at least the following steps:

• t1 “ |Vi| is equal to t;

• vij P tv1, . . . , vnu for all vij P Vi;

• If Vi contains voting options from s different elections (in a combined election event
with multiple simultaneous races), then Vi must contain exactly tj ě 1 voting
options for every election j P t1, . . . , su, where t “

řs
j“1 ti is the total number of

admissible votes. In such cases, the vector pt1, . . . , tsq and the decomposition of
pv1, . . . , vkq into s partitions must be defined as part of the election setup.

Note that it is important to implement factorization efficiently, for example by looping
over all given values pv1, . . . , vkq and using them as candidates for possible prime factors.
Otherwise, if the search for prime factors is implemented “blindly” (for example using an
exhaustive search), then the algorithm could get stuck almost endlessly if a decrypted
vote contains very large prime factors.

28

Nr. Algorithm Description of Check

T1 Tally (cleansing) Testing that BB contains at most one confirmed ballot for
each VCid is properly implemented.

T2 Tally (cleansing) The verification of the non-interactive zero-knowledge
proofs πsch, πexp, and πpleq is implemented properly (simi-
lar to B3 in Table 2.4). The verifications are applied to the
proofs in every confirmed ballot from BB.

T3 Tally (cleansing) The verification of the signatures SVCCid is implemented
properly according to the RSA-PSS standard (see B8 in
Table 2.4). The verification is applied to the signature in-
cluded in every confirmed ballot from BB.

T4 Tally (mixing) The encrypted votes are properly re-encrypted before (or
after) applying the shuffle. A fresh randomization is used
for every ciphertext.

T5 Tally (mixing) The shuffling algorithm selects a permutation uniformly at
random and applies it properly to the list of (re-)encrypted
votes.

T6 Tally (decryption) The decryption of the shuffled ElGamal ciphertexts is im-
plemented properly.

T7 Tally (decryption) The factorizing algorithm is implemented correctly and
runs efficiently even for numbers with arbitrarily large fac-
tors.

T8 Tally (decryption) Testing that each factorized vote tvi,1, . . . , vi,tu is an ele-
ment of the set Ω of admissible vote combinations is im-
plemented properly, such that all types of invalid votes are
detected.

T9 Tally The output list of the cleansing process corresponds to the
input list of the mixing process. The output list of the mix-
ing process corresponds to the input list of the decryption
process.

Table 2.6: List of checks relative to the post-election algorithm Tally.

29

3 Source Code Analysis

Due to the circumstances discussed in Section 1.3, we were not able to apply code analysis
tools to the source code. Thus we were forced to analyze the code mostly manually, which
turned out to be very time-consuming in the light of the vast amount of source files. Our
attempts to build up the necessary understanding of the code was further impeded by
the Spring framework in use. By injecting code at runtime, Spring makes analyzing,
debugging, and navigating through the code considerably more difficult. While finding
code sections implementing a certain task is not difficult as such, figuring out whether
the code is really in use turned out to be cumbersome in many cases. Given the very
limited time for the analysis of the source code, the following analysis is the result of a
best effort approach and cannot be seen as an encompassing and final analysis.

Based on the checklists from Section 2, we analyzed the code by evaluating systematically
each single check of each protocol sub-phase. To present the essence of our conclusions
in a uniform and simple way, we introduce the color scheme of Table 3.1. Note that only
problematic checks (red, orange) will be discussed in detail. Successful checks (green)
are listed in the tables, but are not further elaborated.

Eval. Description

We performed the check and confirm it is properly implemented. Non-security
relevant minor deviations are accepted.

I While performing the check, we discovered that the implementation of some
relevant points is only partially correct.

II We were unable to perform the check: relevant source code is missing.

III We were unable to perform the check: lack of time.

While performing the check, we discovered that some of the most relevant
points are either incorrectly implemented or completely missing.

Table 3.1: Color scheme used to evaluate the checklists from Section 2.

3.1 General Protocol Aspects

The biggest issue we found in the context of the general protocol aspects affects the
cryptographic setup. The generation of the cryptographic parameters p, q, and g and the
missing verification do not follow best practices. Other shortcomings were found related
to consistency tests of input parameters, the usage of the random source, properly hashing
multiple values, the signing of exchanged messages, and messages which contain more
information than defined by the protocol. Most of these aspects could not be analyzed
completely due to the amount of source code and the lack of time. However, for each of

30

the mentioned aspects there is at least one example, where the system is implemented
improperly.

Nr. Findings Eval.

G1 The cryptographic parameters p, q, g, 1λ are not verified by any
component or party. Neither a simple consistency check is done nor
is the security level verified.

G2 The keys are properly generated within the security level of 112 bits
(φ “ ‖pwd‖ “ 3220 “ 2100 and c “ 32000 « 215 results in 100` 15 “
115 ě 112).

G3 Basic tests are generally done, however fundamental tests like group
membership are occasionally missing.

I/II/III

G4 Picking elements uniformly at random based on the output of a cryp-
tographically secure PRNG is implemented more than once and not
always properly.

I/III

G5 The group operations in Gq, Zq, and Z˚p are computed properly.

G6 Collision-resistance is not preserved for hash values of multiple inputs.

G7 Even though there are multiple PKI-trees available and the certifi-
cates for the involved public keys exist and are valid, there are security
critical documents that are not signed. This is not in accordance to
best practice and jeopardizes their authenticity and integrity, as many
of these documents are moved between actors and system boundaries.

I/III

G8 Due to lack of time, it was not possible to do an exhausting verification
of all exchanged messages. However, we found a prominent example
where the information additionally contained in the message alters
the properties of the underlying cryptographic protocol.

I/III

Table 3.2: Evaluation of the general checks.

G1 The true security level, the system is operating in, cannot be determined. This is
due to the fact that multiple security relevant values are not derived from the proposed
security level but are hard coded at some point and propagated throughout the code.

Throughout the complete implementation we have not found a single place, where the
cryptographic parameters p, q, and g are verified by any consistency checks. It is also
not checked whether the bit-lengths of p and q correspond to the security level. Such
checks are even missing when the parameters are taken from an external source11, where
authenticity and integrity is missing due to the lack of a signature.

Furthermore, the procedure for the generation of p, q, g, and the list of primes required
for vote encoding is implemented in a way, that multiple manually induced steps are

11usually by deserializing some values from a file

31

required. This way, the cryptographic setup is highly error prone. Please note, that even
after demanding for it several times we have not received any document describing this
manual process in detail.

As there are several findings within this crucial step of the implementation, please find
the dedicated section 3.2 for more insights.

G3 Due to the amount of source code and lack of time, we were not able to verify all
membership and consistency checks for all algorithm parameters. We were only able to
analyze a limited amount of the source code but we can confirm that basic checks are
generally done. Parameters are checked for null- and/or empty-value and whether they fit
into a certain range. However, fundamental cryptographic checks such as group member-
ship are not done systematically and are occasionally missing. For example the encrypted
partial choice codes are decrypted without a prior check for group membership. Or in the
verification of the plaintext equality proof, the input parameters to the Maurer’s unified
proof verifier are computed on values, which are not checked for group membership; this
questions the soundness of the proofs to guarantee individual verifiability.

The important consistency tests regarding the prime numbers for the voting options
(see Section 2.1.2) have not been found and hence are expected to be missing (see also
Section 3.2).

G4 There is a complete package (securerandom) within the source code for the server-
side, where the delicate matter of choosing entropy pools and acquiring randomness is
treated. However, there are locations, where the productive code uses an alternative
implementation for acquiring randomness, e.g. BigIntTools within the mixnet package.
This way, we could not determine the quality of the randomness used at the server-side
of the system.

The implementation of randomness at the client-side is thoroughly implemented. Un-
fortunately though, the implementation puts usability on top of security. Even if the
implementation realizes that there is too little entropy available in order to provide the
required security level12, it will continue the process in order to provide a good user
experience. Nevertheless, it must be noted, that such a scenario is somewhat unlikely
under normal circumstances.

G6 As far as we were able to analyze the code, there is no mechanism implemented
that provides collision resistance when multiple values are hashed. For example, mul-
tiple strings are simply concatenated by an empty string resulting in the fact that
Hp”ab”||”c”q “ Hp”a”||”bc”q. The same holds for Gq elements, for example Hp12||3q “
Hp1||23q.

G7 Digitally signing and verification of documents is an important security aspect, as
many serializations and de-serializations take place during the different voting phases.
Thus it is key to work with authentic data. The algorithms used for signing and verifica-
tion are all defined in the cryptographic policies. However, the usage of signatures and

12Even if unlikely, it could be as low as 0.

32

verification of data transferred between actors within protocol runs is not always given.
Paired with the omission of cryptographic checks when deserializing data, neither their
origin nor their integrity can be guaranteed. Even if the data is created and serialized
within a trusted environment, good practices prohibits trust after data has been seri-
alized. However, some of the data is moved over system boundaries, such as the data
serialized to db_dump.json. It contains crucial information about the running system
but its integrity and authenticity cannot be verified by any actor. Note, that according
to the documentation this file even travels between the air-gaped computers. Another
example is the file cryptolibPolicy.properties describing which cryptographic algorithms
are in use. Who is the originator of this file, is it still valid, and are all actors working
with the same instance? These questions remain open for any internal actor due to the
lack of signature.

G8 Unfortunately, we were not able to analyze systematically all exchanged messages
due to lack of time. However, we found a prominent example, where the information
additionally added to the message alters the properties of the underlying cryptographic
protocol. After sending the vote, the voter confirms the properly received choice codes
by sending a confirmation message to the BBM. The BBM is then supposed to verify
the confirmation message and to send the short vote caste code sVCCid together with the
signature SVCCid back to the voter. But the BBM sends additionally a digitally signed
receipt. The receipt allows the voter (or any malicious voting device) to prove to anybody
the content of the cast vote without the need to access the bulletin board.

3.2 Cryptographic Setup

For the cryptographic setup, no proper programming code seems available for an au-
tomated and verifiable process. Instead, there are manual ceremonies required, that
comprise many error prone steps. As the resulting values are required before running
the system, it is important to notice, that these ceremonies are run during deploy-time
in an unspecified environment. The API for this ceremony is given by a tool called
configGenerator.sh with different parameters.

Selection of p, q, and g Right at the start of the ceremony to select p, q, and g, there
is a security critical inconsistency present. The API of the tool asks the human user to
put in the size of the required prime number p in bytes. Following the call hierarchy in
the source code, the entered number is interpreted as the number of bits of p. Hence,
if the user follows the API as documented, the setup results in a drop of security by a
factor of eight. This lingering between the interpretation of a value as number of bits
or number of bytes can be found on multiple occasions within the implementation. The
manual process and the misleading API provoke a faulty setup.

33

Selection of Cryptographic Policies In general, it is important that a cryptographic
project always relies on the same cryptographic policies, which comprise the security
level and the cryptographic standards in use (for example for signing, encrypting or
hashing). Even though, the analyzed system provides such policies by a policy file
(cryptolibPolicy.properties), that comprises most of the mentioned entries, this file ex-
ists in different variants and versions throughout the system. This adds an unnecessary
layer of complexity for analyzing and verification of the systems behavior.

Selection of Security Level There are multiple locations within the system, where
security relevant values are used. However, the true security level, the system is operating
in, cannot be determined. This is due to the fact that there exists no single point, where
security relevant values are derived from the proposed security level. Instead, some of
these values are hard coded and propagated throughout the code. To illustrate the
situation, two examples (Listing 1 and Listing 2) are provided regarding the certainty
level to select probable prime numbers:

...
// TODO: [AF] confirm if the certainty level can be set to 90, or if it

should be made configurable
private final int CERTAINTY_LEVEL = 90;
...
public ElGamalEncryptionParameters

generateZpSubGroupEncryptionParameters(final int pBits , final int qBits){
ElGamalEncryptionParamsGenerator elGamalEncryptionParamsGenerator =
new ElGamalEncryptionParamsGenerator(pBits , qBits , CERTAINTY_LEVEL ,

_cryptoRandomBytes);

return elGamalEncryptionParamsGenerator.generate ();
}
public ElGamalEncryptionParameters

generateQuadraticResidueEncryptionParameters(final int pBits) {

QuadResParamsGenerator quadResParamsGenerator =
new QuadResParamsGenerator(pBits , CERTAINTY_LEVEL , _cryptoRandomInteger);

return quadResParamsGenerator.generate ();
}
...

Listing 1: The certainty level used to select probable prime numbers
in the class UniversalElGamalEncryptionParamsGenerator (com.scytl.products.ov.
encryption.params.generation) is hard coded to 90.

34

public class PrimesUtils {
/**
* A measure of the uncertainty that we are willing to tolerate. It ensures
* that the uncertainty level is below 1 - 1/2<sup > {@code certainty}</sup >
*/
public static final int CERTAINTY = 100;

private PrimesUtils () {
}
...
public static final boolean isProbablePrime(final BigInteger bigInteger) {
return bigInteger.isProbablePrime(CERTAINTY);
}
...

Listing 2: The certainty level used to determin whether a number is probable prime in
the class PrimesUtils (com.scytl.cryptolib.primitives.primes.utils) is hard coded
to 100.

Selection of Prime Numbers for Voting Options An important step of the crypto-
graphic setup of this system is the selection of the prime numbers used as representatives
for the voting options. This is part of the manual ceremony, where the user is required
to enter the cryptographic parameters (p, q, and g). Then the tool (configGenerator.sh)
is explicitly looking for a specific file (primes.txt), where some 10000 numbers are stored.
The tool then checks for every number within that file, if the number is a group member
of Gq. However, the tool omits the fundamental verification that checks if the treated
number truly is a prime number. This is considered a major issue, as any group member
will be accepted within this procedure.

As a final extra step, the resulting values have to be updated manually in the system. It
is important to notice, that neither the input nor the output of this procedure is signed
in any way.

After the prime numbers have been chosen as representatives for the voting options, we
could observe, that these prime numbers are not chosen in terms of ’smallest first’, but
by their alphabetical ordering. This results in a somewhat ’biggest first’ strategy, which
is both confusing and lowers the maximum amount of options that can be mapped to
Gq, especially if the file primes.txt is enlarged once.

35

3.3 Pre-Election Phase

We found one major issue in the algorithms which are used in the pre-election phase:
the choice code mapping tables CMid are not permuted enabling the BBM to break vote
secrecy. The check regarding the correct number of generated voting cards could not be
conclusively conducted due to lack of time. All other checks of the pre-election phase
are implemented properly as far as we can judge. Please note the comment about the
cryptographic policies in the Section 3.2 because many algorithms of the pre-election
phase are based on standards configured in the policies file.

Nr. Findings Eval.

S1 RSA key generation is implemented properly using openSSL.

S2 The correct number s of generated voting cards was not conclusively
to assess.

III

S3 The key derivation function δ is implemented properly and the two salts
IDseed and KEYseed are different.

S4 VCidsk is encrypted using a PKCS12 keystore provided by SunJSSE. sCCidi
and psVCCid||SVCCidq are symmetrically encrypted using the AES-GCM
standard.

S5 The keyed pseudo-random function fk is implemented properly (HMAC
based on SHA256).

S6 The randomly selected short choice codes sCCidi are checked for unique-
ness.

S7 The mapping tables CMid are not permuted.

S8 The values CCidi and VCCid are computed properly but not following
the protocol exactly. Not only the specified values are passed to the
function fk but a number of additional values.

S9 The signature SVCCid is implemented properly using the RSA-PSS stan-
dard. However, not only the sVCCid is signed but also the verification
card id.

Table 3.3: Evaluation of the checks relative to the pre-election algorithms.

S2 The generation of voting cards is performed in parallel processes managed by the
Spring Batch framework. The concrete number s of voting cards to generate is injected
at runtime into the corresponding batch job by the framework. Due to lack of time, it
was not possible to conclusively assess whether this number is properly determined (see
also T9).

S7 The choice code mapping tables CMid are neither properly shuffled nor is the order
of the values indirectly permuted by properly using hash tables. In fact, the order is

36

explicitly preserved by using a data structure called LinkedHashMap. This enables the
BBM to break vote secrecy without knowing the private encryption key EBsk.

3.4 Election Phase

Some checks of the election phase are closely related to the checks of the setup phase
and many checks of the client-side and server-side are linked to each other. The protocol
would completely collapse if the different components were using different standards for
the key derivation function or the asymmetric encryption. Hence, it was expected that
most of the checks are implemented properly. We found though one major issue regarding
the proofs for the individual verifiability. Due to lack of time, we were not able to verify
whether the encrypted votes are properly tested for correctness.

Nr. Findings Eval.

V1 The key derivation function δ is implemented properly using the same
standard as in Register and the same salt IDseed.

V2 The key derivation function δ is implemented properly using the same
standard as in Register and the same salt KEYseed.

V3 The decryption of VCksid using the symmetric key KSpwdid is imple-
mented properly using the same standard as in Register.

V4 The computation of the confirmation message CMid is implemented ac-
cording to the protocol.

V5 The ElGamal encryption c is implemented properly using a fresh ran-
domization r.

V6 The pCCidi are computed properly. However, they are additionally en-
crypted which is not according to the protocol.

I

V7 The modified encrypted vote c̃ is derived from c according to the pro-
tocol.

V8 πpleq is not generated according to the protocol. This is a result of the
fact that the partial choice codes are encrypted and hence the equal-
ity proof must be performed under encryption. In addition, also not
according to the protocol, πsch is linked to the voter and election by
applying the Fiat-Shamir heuristic to the voting card id and election id.

V9 The three non-interactive zero-knowledge proofs are implemented prop-
erly. There are minor deviations in the order of the elements by apply-
ing the Fiat-Shamir heuristic.

Table 3.4: Evaluation of the checks relative to the client-side algorithms of the election
phase, which are executed by VD.

37

V6 The partial choice codes pCCid are not transmitted in plain but are additionally
encrypted using an ElGamal multi-encryption scheme. In the compliance report [6] it is
justified why this is done. However, encrypting the partial choice codes is not specified in
the protocol and hence it is also not specified when and by whom the encryption keypair
is generated. From our perspective, aspects of channel security and of the cryptographic
protocol have been mixed up.

V8 As a consequence of encrypting the partial choice codes, the proof πpleq needed to
be replaced by another proof. Instead of proving that an encryption holds a certain
plaintext, it is now proven that two encryptions hold the same plaintext. As the proofs
generated by the voter play a central role for the individual verifiability property of the
online voting scheme, changing these proofs undermines the formal security proof for
individual verifiability, as it is presented in [3].

Additionally, the proof πsch is linked to the voter and election by applying the Fiat-
Shamir heuristic to the voting card and election id. This is not an issue in general but
affects the statement of the proof and needs to be defined in the protocol.

Nr. Findings Eval.

B1 It is checked properly whether the voter with the provided VCid has
already submitted a ballot.

B2 Checking the existence of an entry for VCid in ID and the corresponding
VCidpk is conducted properly.

B3 The three non-interactive zero-knowledge proofs are verified properly.
πpleq is not according to the protocol (see V8)

B4 The correctness rules which are required to verify the vote correctness
are defined using a scripting language. Due to lack of time, it was not
possible to verify the scripts and its evaluation in-depth.

III

B5 The short choice codes are properly tested for uniqueness.

B6 The keyed pseudo-random function fk is implemented properly.

B7 The symmetric decryption using the symmetric key VCCid is imple-
mented properly using the same standard as in Register.

B8 The verification of the signature SVCCid is implemented properly accord-
ing to the RSA-PSS standard.

Table 3.5: Evaluation of the checks relative to the server-side algorithms of the election
phase, which are executed by BBM.

B4 The correct number of partial choice codes is indirectly verified by checking the
correctness of the vote. Vote correctness in implemented by linking each partial choice
code to a correctness id and applying a certain number of rules (see Appendix A.4 in
[3]). The rules are not implemented in Java but in a scripting language (JavaScript)

38

and stored with the election information. Due to lack of time, it was not possible to
completely evaluate the ruleset and to verify its proper implementation.

3.5 Post-Election Phase

We did not find any major issue in the post-election phase. We were not able to verify the
test for correctness of the decrypted votes due to the same reason as for the encrypted
votes in the voting phase. Time was also missing for the non cryptographic but very
important last check.

Nr. Findings Eval.

T1 It is tested that BB contains at most one confirmed ballot for each VCid.

T2 The verification of the three non-interactive zero-knowledge proofs is
implemented properly. The verification is conducted for every con-
firmed ballot.

T3 The verification of the signatures SVCCid is implemented properly and
conducted for every confirmed ballot.

T4 The encrypted votes are properly re-encrypted before (or after) apply-
ing the shuffle. A fresh randomization is used for every ciphertext.

T5 The shuffling algorithm selects a permutation uniformly at random and
applies it properly to the list of encrypted votes.

T6 The decryption of the shuffled ElGamal ciphertexts is implemented
properly.

T7 The factorizing algorithm is implemented correctly and runs efficiently.
The decrypted vote is checked for only those prime factors which are
valid vote options.

T8 The final test to check whether the decrypted and factorized vote
tvi,1, . . . , vi,tu is a valid vote is implemented by applying certain rules
defined in a scripting language. Due to lack of time, it was not possible
to verify the scripts and its evaluation in-depth.

III

T9 Due to lack of time and the frameworks in use, it was not possible to
verify the proper data flow between the different processes.

III

Table 3.6: Evaluation of the checks relative to the post-election algorithms.

T8 Similarly to the check B4 during the voting phase, we were not able to verify the
test for correctness of the decrypted and factorized vote due to lack of time. The applied
rules are defined by a script which is evaluated in Java.

T9 Especially in the post-election phase much can go wrong that is not directly related to
cryptography. For example, does the list of votes which is passed to the cleansing process

39

contain all cast votes or have some votes (accidentally) been suppressed? Similarly, does
the list of votes passed to the mixing process correspond to the proper output of the
cleansing process? There is evidence that these critical aspects are properly implemented.
None of our test elections during debugging the system had any improper divergence in
the final tally. However, we were not able to verify such aspects in the source code. This
is due to lack of time and the frameworks in use. Spring and Spring Batch are extremely
powerful but complex frameworks. Batch jobs can be defined on certain resources and
the framework takes responsibility to run them in parallel. Hence, no simple loop over
the cast votes can be found in the source code. Verifying such aspects is therefore a
complex and time consuming task.

40

References

[1] Swiss online voting protocol. Scytl Secure Electronic Voting, Barcelona, Spain, 2015.

[2] Online voting – cryptographic tools specification. Scytl Secure Electronic Voting,
Barcelona, Spain, 2016.

[3] Swiss online voting system – cryptographic proof of individual verifiability. Scytl
Secure Electronic Voting, Barcelona, Spain, 2017.

[4] Verordnung der Bundeskanzlei über die elektronische Stimmabgabe (VEleS) vom 13.
Dezember 2013 (Stand vom 1. Juli 2018). Die Schweizerische Bundeskanzlei (BK),
2018.

[5] Online voting – protocol specifications. Scytl Secure Electronic Voting, Barcelona,
Spain, 2019.

[6] Security analysis of key cryptographic elements for individual verifiability. Scytl
Secure Electronic Voting, Barcelona, Spain, 2019.

[7] Security review of key cryptographic elements of the e-voting solution. Kudelski
Security, 2019.

[8] D. Basin and S. Čapkun. Addendum to review of electronic voting protocol models
and proofs. Final report (v1.0), Contego Laboratories, Rüschlikon, Switzerland,
2017.

[9] D. Basin and S. Čapkun. Review of electronic voting protocol models and proofs.
Final report (v2.0), Contego Laboratories, Rüschlikon, Switzerland, 2017.

[10] D. Bernhard, O. Pereira, and B. Warinschi. How not to prove yourself: Pitfalls of the
Fiat-Shamir heuristic and applications to Helios. In X. Wang and K. Sako, editors,
ASIACRYPT’12, 18th International Conference on the Theory and Application of
Cryptology and Information Security, LNCS 7658, pages 626–643, Beijing, China,
2012.

[11] J. Fried, P. Gaudry, N. Heninger, and E. Thomé. A kilobit hidden SNFS discrete
logarithm computation. IACR Cryptology ePrint Archive, 2016/961, 2016.

[12] D. Galindo. Analysis of cast-as-intended verifiability and ballot privacy properties
for Scytl’s swiss online voting protocol using ProVerif. Technical report, University
of Birmingham, Birmingham, U.K., 2017.

[13] Donald E. Knuth. The Art of Computer Programming, volume 2, Seminumerical
Algorithms. Addison Wesley, 3rd edition, 1997.

[14] S. J. Lewis, O. Pereira, and V. Teague. How not to prove your election outcome.
Technical report, 2019.

[15] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, USA, 1996.

41

	Introduction
	Goal of Mandate
	Received Documents
	Received Source Code

	Cryptographic Protocol
	General Protocol Aspects
	Cryptographic Setup
	Membership and Consistency Tests
	Randomness Generation
	Group Operations
	Collision-Resistant Hashing
	Communication and Channel Security

	Pre-Election Phase
	Algorithm Setup
	Algorithm Register

	Election Phase
	Algorithms GetID, GetKey, Confirm, CreateVote
	Algorithms ProcessVote, CreateCC, ProcessConfirm

	Post-Election Phase

	Source Code Analysis
	General Protocol Aspects
	Cryptographic Setup
	Pre-Election Phase
	Election Phase
	Post-Election Phase

